Agrochemical

The Passaic Agricultural Chemical Works in Newark, New Jersey, 1876

An agrochemical or agrichemical, a contraction of agricultural chemical, is a chemical product used in industrial agriculture. Agrichemical typically refers to biocides (pesticides including insecticides, herbicides, fungicides and nematicides) alongside synthetic fertilizers. It may also include hormones and other chemical growth agents.[1][2] Though the application of mineral fertilizers and pesticidal chemicals has a long history, the majority of agricultural chemicals were developed from the 19th century, and their use were expanded significantly during the Green Revolution and the late 20th century.[3] Agriculture that uses these chemicals is frequently called conventional agriculture.[4]

Agrochemicals are counted among speciality chemicals. Most agrochemicals are products of the petrochemical industry, where chemicals are derivitatives of fossil fuels.[5] The production and use of agrochemicals contribute substantially to climate change, both through direct emissions during production, and through indirect emissions created from soil ecology problems created by the chemicals.[5]

Agrochemicals, especially when improperly used or released in local environments, have led to a number of public health and environmental issues.[3] Agrochemicals and their production can be significant environmental pollution.[3] Agrochemicals are responsible for significant damage to waterways through runoff, and inproperly stored agrochemicals and agrochemical wastes are responsible for spills, especially during extreme weather events.[6][3] Following the publication of Rachel Carson's Silent Spring, increased global attention has been paid to these ecological impacts of certain classes of chemicals, both in terms of effects on ecosystems and biodiversity loss. Some farmers choose not to use agrochemicals, with sustainable agriculture approaches such as organic farming or agroecology, avoiding use of pesticides and industrial chemicals, in favor of naturally occurring chemicals.[7]

  1. ^ "Agrochemicals Handbook from C.H.I.P.S." C.H.I.P.S.
  2. ^ "Agrochemicals and Security". University of Florida. Archived from the original on 2017-10-16. Retrieved 2008-12-14.
  3. ^ a b c d Devi, P. Indira; Manjula, M.; Bhavani, R.V. (2022-10-17). "Agrochemicals, Environment, and Human Health". Annual Review of Environment and Resources. 47 (1): 399–421. doi:10.1146/annurev-environ-120920-111015. ISSN 1543-5938.
  4. ^ Jastrzębska, Magdalena; Kostrzewska, Marta; Saeid, Agnieszka (2022-01-01), Chojnacka, Katarzyna; Saeid, Agnieszka (eds.), "Chapter 1 - Conventional agrochemicals: Pros and cons", Smart Agrochemicals for Sustainable Agriculture, Academic Press, pp. 1–28, ISBN 978-0-12-817036-6, retrieved 2024-10-31
  5. ^ a b Agrochemicals Are Fossil Fuels in Another Form (Report). Center for International Environmental Law (CIEL). 2022-01-01.
  6. ^ Anenberg, Susan C.; Kalman, Casey (May 2019). "Extreme Weather, Chemical Facilities, and Vulnerable Communities in the U.S. Gulf Coast: A Disastrous Combination". GeoHealth. 3 (5): 122–126. doi:10.1029/2019GH000197. ISSN 2471-1403. PMC 7038901. PMID 32159036.
  7. ^ Ganguly, Ram K.; Mukherjee, Arpan; Chakraborty, Susanta K.; Verma, Jay Prakash (2021-01-01), Verma, Jay Prakash; Macdonald, Catriona A.; Gupta, Vijai Kumar; Podile, Appa Rao (eds.), "Chapter 2 - Impact of agrochemical application in sustainable agriculture", New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, pp. 15–24, ISBN 978-0-444-64325-4, retrieved 2024-10-31

Developed by StudentB