AlexNet è un modello di rete neurale convoluzionale (CNN) profonda progettata dai dottorandi Alex Krizhevsky e Ilya Sutskever, sotto la supervisione di Geoffrey Hinton.[1][2]
AlexNet rappresentò un significativo avanzamento nel riconoscimento automatico delle immagini. Nella ImageNet Large Scale Visual Recognition Challenge del 2012[3] AlexNet ottenne un errore top-5 del 15.3%, oltre 10.8 punti percentuali in meno del secondo classificato. La profondità del modello risultò essenziale per la qualità dei risultati, e il problema dell'elevato costo computazionale venne aggirato eseguendo l'addestramento del modello su due GPU in parallelo.[2]
La descrizione e i risultati di AlexNet furono pubblicati nel 2012 in uno degli articoli di ricerca più influenti nella storia della visione artificiale, citato in oltre 130 000 pubblicazioni al 2023,[4] aprendo la strada all'uso estensivo dell'apprendimento profondo nella visione artificiale.[5]