Elo-Zahl

Schach
Linsenförmige Spielsteine in Schwarz und Weiß liegen unregelmäßig auf einem Holzbrett verteilt, das horizontal und vertikal liniert ist.
Go

Die Elo-Zahl (auch Elozahl) ist eine Wertungszahl, welche die Spielstärke von Schachspielern beschreibt. Sie wurde nach ihrem Erfinder Arpad Elo benannt. Inzwischen wurde das Konzept auch für andere Spiele und Sportarten adaptiert (s. u.).

Ausgehend vom Bradley-Terry-Modell (benannt nach R. A. Bradley und M. E. Terry,[1] die es im Jahr 1952 präsentierten[2]), das wiederum auf einer Arbeit von Ernst Zermelo aus den 1920er Jahren basiert,[3][4][5] entwickelte Arpad Elo 1960 ein objektives Wertungssystem für den US-amerikanischen Schachverband USCF. Es wurde 1970 auf dem Kongress in Siegen vom Weltschachverband FIDE übernommen. Der Weltschachverband nennt sein System FIDE rating system. Eine Wertungszahl heißt offiziell FIDE rating, wird umgangssprachlich aber zumeist einfach als „Elo-Zahl“ bezeichnet. Neben dem internationalen Wertungssystem der FIDE existieren auch nationale Wertungssysteme mit unterschiedlichen Namen. In Deutschland heißt das nationale Wertungssystem Deutsche Wertungszahl (DWZ), in Österreich werden (nationale) Elo-Zahlen berechnet, und in der Schweiz gibt es eine Führungsliste mit Führungszahlen. Diese Systeme werten wesentlich mehr lokale Turniere aus, berechnen die Wertungszahlen aber ebenso nach den Methoden von Arpad Elo mit meist nur geringen Modifikationen und abweichenden Faktoren.

  1. E. E. M. van Berkum: Bradley-Terry model, Encyclopedia of Mathematics Online, abgerufen am 18. November 2014.
  2. Ralph Allan Bradley, Milton E. Terry: Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons. Biometrika, Bd. 39, Nr. 3/4, S. 324, 1952 JSTOR (abgerufen am 22. August 2018).
  3. David R. Hunter: MM algorithms for generalized Bradley–Terry models. The Annals of Statistics, Bd. 32, Nr. 1, 2004, S. 384–406 Online JSTOR (abgerufen am 22. August 2018).
  4. Ernst Zermelo: Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, Bd. 29, Nr. 1, 1929, S. 436–460 DOI (abgerufen am 22. August 2018).
  5. Heinz-Dieter Ebbinghaus: Ernst Zermelo: An Approach to His Life and Work. Springer, Berlin 2007, ISBN 978-3-540-49553-6, S. 268–269.

Developed by StudentB