Huttonite | |
---|---|
General | |
Category | Silicate mineral |
Formula (repeating unit) | ThSiO4 |
IMA symbol | Ht[1] |
Strunz classification | 9.AD.35 |
Crystal system | Monoclinic |
Crystal class | Prismatic (2/m) (same H-M symbol) |
Space group | P21/n |
Unit cell | a = 6.77 Å, b = 6.96 Å c = 6.49 Å; β = 104.99°; Z = 4 |
Identification | |
Formula mass | 324.12 g/mol |
Color | Colorless, cream, pale yellow |
Crystal habit | Prismatic, flattened; typically as anhedral grains |
Cleavage | Distinct along [001], indistinct along [100] |
Fracture | Conchoidal |
Mohs scale hardness | 4.5 |
Luster | Adamantine |
Streak | White |
Diaphaneity | Transparent to translucent |
Specific gravity | 7.1 |
Optical properties | Biaxial (+) |
Refractive index | nα = 1.898, nβ = 1.900, nγ = 1.922 |
Birefringence | δ = 0.0240 |
2V angle | 25° |
Dispersion | r < v (moderate) |
Ultraviolet fluorescence | Dull white (under shortwave) |
Other characteristics | Radioactive |
References | [2][3][4] |
Huttonite is a thorium nesosilicate mineral with the chemical formula ThSiO4 and which crystallizes in the monoclinic system. It is dimorphous with tetragonal thorite, and isostructual with monazite. An uncommon mineral, huttonite forms transparent or translucent cream–colored crystals. It was first identified in samples of beach sands from the West Coast region of New Zealand by the mineralogist Colin Osborne Hutton (1910–1971).[5] Owing to its rarity, huttonite is not an industrially useful mineral.