'n Kwantumrekenaar is 'n rekenaar wat gebruik maak van kwantummeganiese verskynsels. Op baie klein skale vertoon materie eienskappe van beide deeltjies en golwe, en kwantumrekenaars buit hierdie gedrag uit deur middel van gespesialiseerde hardeware. Klassieke fisika kan nie die werking van sulke kwantumtoestelle verduidelik nie. 'n Skaalbare kwantumrekenaar kan sommige berekeninge eksponensieel vinniger uitvoer as enige moderne "klassieke" rekenaar. 'n Kwantumrekenaar wat groot genoeg is kan moontlik alombekende enkripsieskemas omseil en fisici help om rekenaarnabootsings uit te voer. Die beste kwantumrekenaars wat mens op die oomblik kan kry, is egter steeds grootliks eksperimenteel en onprakties.
Die sentrale eenheid van inligting in kwantumberekening is die kwabis, wat vergelykbaar is aan die bis van klassieke digitale elektronika. Anders as met 'n klassieke bis, kan 'n kwabis egter in 'n samestelling van twee basistoestande wees, wat min of meer beteken dat dit gelyktydig in beide toestande bestaan. Wanneer 'n kwabis waargeneem word, is die resultaat 'n kansgebaseerde afvoer van 'n klassieke bis. As 'n kwantumrekenaar die kwabis op 'n bepaalde manier manipuleer, kan golfinterferensieeffekte die gewenste afvoerresultate versterk. Die ontwikkeling van kwantumalgoritmes behels die skepping van prosedures wat 'n kwantumrekenaar in staat stel om berekeninge effektief uit te voer.
Die daadwerklike fabrikasie van hoë gehalte kwabisse is 'n uitdaging. As 'n fisiese kwabis nie goed genoeg van sy omgewing geïsoleer is nie, ondergaan dit kwantumdekoherensie, wat ruising in berekeninge inbring. Regerings oor die hele wêreld belê groot bedrae geld in eksperimentele navorsing wat daarop gemik is om skaalbare kwabisse met langer koherensietye en laer foutkoerse te ontwikkel. Tans is die twee mees belowende tegnologieë supergeleiers (wat 'n elektriese stroom isoleer deur elektriese weerstand uit te skakel) en ioonvalle (wat enkele deeltjies vasvang deur middel van elektromagnetiese velde).
Enige berekeningsprobleem wat deur 'n klassieke rekenaar uitgereken kan word kan ook deur 'n kwantumrekenaar opgelos word.[2] Aan die ander hand kan enige probleem wat deur 'n kwantumrekenaar opgelos kan word ook deur 'n klassieke rekenaar bereken word, gegewe dat daar voldoende tyd vir hierdie berekening beskikbaar is. Dit beteken dat kwantumrekenaars aan die Church-Turing tesis onderhewig is. Dus, hoewel kwantumrekenaars geen voordele bo klassieke rekenaars in terme van berekenbaarheid bied nie, het kwantumalgoritmes vir sekere probleme aansienlike laer tydskompleksiteit in vergelyking met ooreenstemmende klassieke algoritmes. Daar word geglo dat kwantumrekenaars sekere probleme wat geen klassieke rekenaar in 'n redelike tyd kan bereken nie, baie vinnig kan oplos — 'n prestasie wat as "kwantumvoordeel" bekendstaan. Die studie van die berekeningskompleksiteit van probleme met betrekking tot kwantumrekenaars staan bekend as kwantumkompleksiteitsteorie.
{{cite news}}
: AS1-onderhoud: url-status (link)