Turbofan

Animation of turbofan, which shows flow of air and the spinning of blades.
Animation of a 2-spool, high-bypass turbofan
  1. Low-pressure spool
  2. High-pressure spool
  3. Stationary components
  1. Nacelle
  2. Fan
  3. Low-pressure compressor
  4. High-pressure compressor
  5. Combustion chamber
  6. High-pressure turbine
  7. Low-pressure turbine
  8. Core nozzle
  9. Fan nozzle

A turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a combination of references to the preceding generation engine technology of the turbojet and the additional fan stage. It consists of a gas turbine engine which achieves mechanical energy from combustion,[1] and a ducted fan that uses the mechanical energy from the gas turbine to force air rearwards. Thus, whereas all the air taken in by a turbojet passes through the combustion chamber and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.

The ratio of the mass-flow of air bypassing the engine core to the mass-flow of air passing through the core is referred to as the bypass ratio. The engine produces thrust through a combination of these two portions working together. Engines that use more jet thrust relative to fan thrust are known as low-bypass turbofans; conversely those that have considerably more fan thrust than jet thrust are known as high-bypass. Most commercial aviation jet engines in use are of the high-bypass type,[2][3] and most modern fighter engines are low-bypass.[4][5] Afterburners are used on low-bypass turbofan engines with bypass and core mixing before the afterburner.

Modern turbofans have either a large single-stage fan or a smaller fan with several stages. An early configuration combined a low-pressure turbine and fan in a single rear-mounted unit.

  1. ^ Marshall Brain (April 2000). "How Gas Turbine Engines Work". howstuffworks.com. Retrieved 2010-11-24.
  2. ^ Hall, Nancy (May 5, 2015). "Turbofan Engine". Glenn Research Center. NASA. Retrieved October 25, 2015. Most modern airliners use turbofan engines because of their high thrust and good fuel efficiency.
  3. ^ Michael Hacker; David Burghardt; Linnea Fletcher; Anthony Gordon; William Peruzzi (March 18, 2009). Engineering and Technology. Cengage Learning. p. 319. ISBN 978-1-285-95643-5. Retrieved October 25, 2015. All modern jet-powered commercial aircraft use high bypass turbofan engines [...]
  4. ^ Cite error: The named reference Verma2013 was invoked but never defined (see the help page).
  5. ^ Frank Northen Magill, ed. (1993). Magill's Survey of Science: Applied science series, Volume 3. Salem Press. p. 1431. ISBN 9780893567088. Most tactical military aircraft are powered by low-bypass turbofan engines.

Developed by StudentB