Wavelet-transformation

1D-Wavelets af typen Daubechies-4. Den blå er Wavelet-skaleringsfunktionen - og den røde er den "standard" Wavelet-funktionen.
1D-Wavelets af typen Daubechies-4 i frekvensfunktionsrummet. Her ses det Wavelet-skaleringsfunktionen har flest lavfrekvente frekvenser (blå) - og at den røde "standard" Wavelet-funktion har flest højfrekvente frekvenser.
Et eksempel på en 2D diskret wavelet-transformation som anvendes i billedformatet JPEG2000. Gråtonerne er Wavelet-koefficienter.
2D-Wavelet-koefficienter typisk vist som gråtoner. For hver kvadrat "niveau" (Ø, SØ, S) man går - går man også en Wavelet-koefficient skalaniveau op eller ned - niveauet er definitionsafhængigt - nogle øger den ved Wavelet-dilation og andre lader den falde. Kvadratet mærket "DC" er minimum én eller flere Wavelet-skaleringsfunktions-koefficienter.

Indenfor matematik er en wavelet-række en repræsentation af en kvadratisk integrabel (reel- eller kompleks-værdi) funktion af en bestemt ortonormal række genereret af en wavelet. Denne artikel viser en formel, matematisk definition af en ortonormal wavelet og af den integrale wavelet-transformation også kaldet den integrale wavelet-afbildning.


Developed by StudentB