Poluprovodnik

Poluprovodnik predstavlja materijal koji ima vrijednost električne konduktivnosti koja pada između provodnika, kao što je bakar, i izolatora, kao što je staklo. Poluprovodnici su otkriće moderne elektronike. Poluprovodnički materijali postoje u dvije vrste - elementarni materijali i spoj materijala.[1] Moderno shvatanje osobina poluprovodnika oslanja se na kvantnu fiziku da objasni pokretanje elektrona i rupa u kristalnoj rešetci.[2] Unikatni raspored kristalne rešetke čini da su silicij i germanij najčešće korišteni elementi u pripremi poluprovodničkih materijala. Povećano znanje poluprovodničkih materijala i fabrički procesi učinili su mogućim nastavljajuće poraste u kompleksnosti i brzini mikroprocesora i memorijskih uređaja. Neke od ovih informacija na stranici mogu zastarjeti u periodu od godinu dana, zbog činjenice da se nova otkrića u ovom polju rade veoma često.[2]

Električna konduktivnost poluprovodničkog materijala raste sa porastom temperature, što je ponašanje suprotno onom od metala. Poluprovodnički uređaji mogu prikazati opseg različitih osobina kao što je prolazak struje mnogo lakše u jednom pravcu u odnosu na drugi, pokazujući promjenljivi otpor, i osjetljivost na svjetlost i toplotu. Zbog ovih električnih osobina poluprovodnički materijal može biti modificiran kontroliranim dodavanjem nečistoća, ili primjenom električnog polja ili svjetlosti, uređaji napravljeni od poluprovodnika mogu biti koritešni za amplifikaciju, preklopku i pretvorbu energije.

Kondukcija električne struje u poluprovodniku pojavljuje se kroz prolaz slobodnih elektrona i "rupa", kolektivno poznatih kao nosioci naboja. Dodavanjem nečistih atoma u poluprovodnički materijal, što je poznato kao  "dopingovanje", uveliko povećava broj nosioca naboja unutar njega. Kada dopingovani poluprovodnik sadrži uglavnom slobodne rupe naziva se "p-tip", a kada uveliko sadrži slobodne elektrone poznat je kao "n-tip". Poluprovodnički materijali korišteni u elektronskim uređajima dopinguju se pod specijalnim uvjetima da kontroliraju koncentraciju i regije p- i n-tip dopanta. Jedan poluprovodnički kristal može imati više p- i n-tip regija; p-n raskrsnice između ovih regija su odgovorne za korisno elektroničko ponašanje .

Neke od osobina poluprovodničkih materijala bile su posmatrane kroz sredinu 19. i prve decenije 20. vijeka. Razvoj kvantne fizike zauzvrat dopustio je razvoj tranzistora 1947.[3] Iako nekolicina čistih elemenata i  više spojeva prikazuju osobine poluprovodnika, silicij, germanij, i spojevi galija najviše se koriste u eektronskim uređajima. Elementi blizu takozvanih "metaloidnih stepenica", gdje su metaloidi locirani u PSE, često se koriste kao poluprovodnici.

  1. ^ Neamen, Donald. "Semiconductor Physics and Devices" (PDF). Elizabeth A. Jones.
  2. ^ a b Feynman, Richard (1963). Feynman Lectures on Physics. Basic Books.
  3. ^ Shockley, William (1950). Electrons and holes in semiconductors : with applications to transistor electronics. R. E. Krieger Pub. Co. ISBN 0882753827.

Developed by StudentB