No s'ha de confondre amb Mitjana. |
En estadística descriptiva, la mediana d'un conjunt de dades numèriques és un nombre tal que la meitat de les dades són menors (o iguals) que ell, i l'altra meitat més grans (o iguals). Per tant, en el conjunt de les dades ordenades, la mediana ocupa el lloc central.[1] Anàlogament, en teoria de la probabilitat es defineix la mediana d'una variable aleatòria com un nombre tal que la variable té igual probabilitat de prendre valors menors o majors que ell. Finalment, en inferència estadística s'estudia la mediana poblacional i la mediana mostral.
La mediana s'utilitza normalment per a donar un valor "típic" que caracteritza un conjunt de dades. En comparació amb la mitjana, la propietat essencial de la mediana és que no es veu afectada si hi ha un grup de dades molt més petit o molt més grans que les altres, mentre que la mitjana sí que pot quedar distorsionada. Un exemple d'aquesta situació es dona a l'analitzar el temps que els estudiants universitaris tarden en fer una carrera, el fet que hi hagi alguns estudiants que estiguin molts anys per acabar la carrera (perquè es posen a treballar i alenteixen els estudis, o altres motius) fa que la mitjana no reflecteixi bé les dades; al contrari, la mediana no és sensible a aquests valors extrems, i proporciona un millor valor representatiu de la durada dels estudis.
No existeix una notació estàndard àmpliament acceptada per a la mediana, però alguns autors representen la mediana d'una variable x com x͂ o com μ1/2[2] i alguns cops també M.[3][4] En tots aquests casos, l'ús d'aquests o d'altres símbols per representar la mediana ha de ser explicitat definint-los en introduir-los.