Arwynebedd

Arwynebedd
Mathintegryn pendant, maint corfforol, meintiau deilliadol ISQ, meintiau sgalar, area, geometric measure Edit this on Wikidata
Rhagflaenwyd ganhyd Edit this on Wikidata
Olynwyd gancyfaint Edit this on Wikidata
Tudalen Comin Ffeiliau perthnasol ar Gomin Wicimedia

Priodwedd meintiol yw arwynebedd (sy'n enw gwrywaidd) a mesuriad y gofod dau ddimensiwn mae’n ei orchuddio. Mesurir arwynebedd, fel arfer, mewn sgwariau e.e. milimetr sgwâr, centimetr sgwâr. Defnyddir y term 'arwyneb yr arwynebedd' am surface area.[1]

Three shapes on a square grid
Mae cyfanswm arwynebedd y tri siâp hyn oddeutu 15.57 sgwâr.

Arwynebedd, felly, yw'r lamina planar, yn y plân, a'r faint o baent sy’n angenrheidiol i orchuddio’r wyneb ag un gôt.[2] Mae'n analog dau ddimensiwn o hyd cromlin (cysyniad un dimensiwn) neu gyfaint solid (cysyniad tri dimensiwn).

Gellir mesur arwynebedd siâp trwy gymharu'r siâp â sgwariau o faint sefydlog: gweler y diagram.[3] Yn y System Ryngwladol o Unedau (OS), yr uned arwynebedd safonol yw'r metr sgwâr (wedi'i ysgrifennu fel m2), sef arwynebedd sgwâr y mae ei ochrau'n un fetr o hyd.[4] Byddai gan siâp ag arwynebedd o dri metr sgwâr yr un arwynebedd â thri sgwâr o'r fath. Mewn mathemateg, diffinnir sgwâr fel uned sydd ag arwynebedd o un, ac mae arwynebedd unrhyw siâp neu arwyneb arall yn rhif real di-ddimensiwn.

Mae gan y sgwâr hwn a'r ddisg hon yr un arwynebedd (gweler: sgwario'r cylch).

Mae yna sawl fformiwla adnabyddus ar gyfer arwynebedd siapiau syml fel trionglau, petryalau, a chylchoedd. Gan ddefnyddio'r fformwlâu hyn, gellir dod o hyd i arwynebedd unrhyw bolygon trwy rannu'r polygon yn drionglau.[5] Ar gyfer siap â ffin grom, fel rheol mae angen calcwlws i gyfrifo'r arwynebedd. Yn wir, roedd y broblem o bennu arwynebedd ffigurau plân yn gymhelliant mawr i ddatblygiad hanesyddol calcwlws.[6]

Ar gyfer siâp solet fel sffêr, côn, neu silindr, gelwir arwynebedd ei ffin yn "arwyneb yr arwynebedd".[7][8][9] Cyfrifwyd fformiwlâu ar gyfer arwynebedd siapiau syml gan yr hen Roegiaid, ond fel rheol mae cyfrifo arwynebedd siâp mwy cymhleth yn gofyn am galcwlws aml-newidyn (<i>multivariable</i>).

Mae arwynebedd yn chwarae rhan bwysig mewn mathemateg fodern. Yn ychwanegol at ei bwysigrwydd amlwg mewn geometreg a chalcwlws, mae arwynebedd yn gysylltiedig â'r diffiniad o benderfynyddion mewn algebra llinol, ac mae'n briodwedd sylfaenol arwynebau mewn geometreg wahaniaethol. Mewn dadansoddiad, diffinnir arwynebedd is-set o'r blanau gan ddefnyddio mesur Lebesgue,[10] er nad yw pob is-set yn fesuradwy.[11] Yn gyffredinol, mae arwynebedd mewn mathemateg-uwch yn cael ei ystyried yn achos arbennig o gyfaint ar gyfer rhanbarthau dau-ddimensiwn.[7]

Gellir diffinio arwynebedd trwy ddefnyddio gwirebau, gan ei ddiffinio fel swyddogaeth casgliad o rai ffigurau plân i'r set o rifau real. Gellir profi bod ffwythiant o'r fath yn bodoli.

  1. geiriadur.bangor.ac.uk; geiriadur Bangor. Adalwyd 10 Chwefror 2019.
  2. Weisstein, Eric W. "Area". Wolfram MathWorld. Archifwyd o'r gwreiddiol ar 5 Mai 2012. Cyrchwyd 3 Gorffennaf 2012.
  3. "Area Formulas". Math.com. Archifwyd o'r gwreiddiol ar 2 Gorffennaf 2012. Cyrchwyd 2 Gorffennaf 2012.
  4. "Resolution 12 of the 11th meeting of the CGPM (1960)". Bureau International des Poids et Mesures. Archifwyd o'r gwreiddiol ar 2012-07-28. Cyrchwyd 15 Gorffennaf 2012.
  5. Mark de Berg; Marc van Kreveld; Mark Overmars; Otfried Schwarzkopf (2000). "Chapter 3: Polygon Triangulation". Computational Geometry (arg. 2nd revised). Springer-Verlag. tt. 45–61. ISBN 978-3-540-65620-3.
  6. Boyer, Carl B. (1959). A History of the Calculus and Its Conceptual Development. Dover. ISBN 978-0-486-60509-8.
  7. 7.0 7.1 Weisstein, Eric W. "Area". Wolfram MathWorld. Archifwyd o'r gwreiddiol ar 5 Mai 2012. Cyrchwyd 3 Gorffennaf 2012.Weisstein, Eric W. "Area". Wolfram MathWorld. Archived from the original on 5 Mai 2012. Retrieved 3 July 2012.
  8. Weisstein, Eric W. "Surface Area". Wolfram MathWorld. Archifwyd o'r gwreiddiol ar 23 Mehefin 2012. Cyrchwyd 3 Gorffennaf 2012.
  9. Foundation, CK-12. "Surface Area". CK-12 Foundation (yn Saesneg). Cyrchwyd 2018-10-09.
  10. Walter Rudin (1966). Real and Complex Analysis, McGraw-Hill, ISBN 0-07-100276-6.
  11. Gerald Folland (1999). Real Analysis: modern techniques and their applications, John Wiley & Sons, Inc., p. 20, ISBN 0-471-31716-0

Developed by StudentB