Et Fermatprimtal (opkaldt efter Pierre de Fermat) er et primtal af formen . Fermat bemærkede at var et primtal for m lig med 0, 1, 2, 3 og 4. Han påstod derfor at det samme gjaldt for alle værdier af m. Men i 1732 viste Euler at det ikke er tilfældet: Med m=5 får vi at 232+1 er deleligt med 641. Med m=6 får vi 264+1; at dette tal er sammensat, eftervistes i 1854 af den danske matematiker Thomas Clausen der fandt at dets mindste primfaktor er 274 177.
Til dato er der ikke fundet flere værdier af m der gør til et primtal, og det forekommer usandsynligt at der skulle eksistere nogen. I skrivende stund kendes der 277 specifikke værdier af m for hvilke det vides med sikkerhed at er sammensat. Den mindste værdi af m for hvilken man ikke kender statussen af , er m=33.
Man kan let indse at hvis et tal af typen 2k+1 skal være et primtal, så må k selv være en potens af 2, altså k=2m. Thi hvis k havde en ulige divisor d forskellig fra 1, så ville 2k+1 være et sammensat tal fordi det var deleligt med 2k/d+1. Bemærk at hvis k er et ulige tal så er 2k+1 deleligt med 2k/k+1 = 3.