Der er ingen kildehenvisninger i denne artikel, hvilket er et problem. (april 2016) (Lær hvordan og hvornår man kan fjerne denne skabelonbesked) |
En funktion eller afbildning er i matematisk forstand et redskab, der beskriver sammenhængen mellem en såkaldt uafhængig variabel og en anden, såkaldt afhængig variabel. Et hverdagseksempel på en funktion, er sammenhængen mellem hvor meget man bruger sin telefon i løbet af en måned, og hvad man betaler for det: Her er den forbrugte taletid den uafhængige variabel, mens prisen er den afhængige variabel – »afhængig« fordi den afhænger af forbruget. Operator og transformation[1][2] er andre navne anvendt for funktion.
Funktioner er specialtilfælde af det matematiske begreb relation: Det særlige ved en funktion er, at der til en bestemt værdi af den uafhængige variabel hører én og kun én værdi for den afhængige variabel[3] – andre relationer "har lov til" at knytte mere end én værdi for den afhængige variabel, til hver mulig værdi af den uafhængige variabel. Set i forhold til eksemplet med telefonen betyder det, at der kun er knyttet én pris (værdi af den afhængige variabel) til et bestemt forbrug (værdi af den uafhængige variabel); hvis man brugte den samme mængde taletid i løbet af hver måned, ville man få en telefonregning på det samme beløb måned efter måned (her ses bort fra udlands-takster, prisændringer m.v.).