Physikalische Größe | |||||||
---|---|---|---|---|---|---|---|
Name | Drehimpuls | ||||||
Größenart | Wirkung | ||||||
Formelzeichen | |||||||
|
Der Drehimpuls (in der Mechanik auch Drall oder veraltet Schwung oder Impulsmoment) ist eine physikalische Erhaltungsgröße. Ein System hat beispielsweise dann einen Drehimpuls, wenn es sich um seinen Massenschwerpunkt dreht, wie bspw. ein Kreisel, ein Sportler bei einer Pirouette oder ein Planetensystem.
Der Drehimpuls ist eine vektorielle Größe, und zwar – wie das Drehmoment und die Winkelgeschwindigkeit – ein Pseudovektor. Seine Dimension ist das Produkt aus Masse, Länge und Geschwindigkeit. Im SI-Einheitensystem wird er in Newtonmetersekunden () gemessen.[A 1] Sein Formelzeichen ist oder .
Der Drehimpuls eines Systems ist die Summe der Drehimpulse seiner Komponenten. Der Drehimpuls einer Komponente des Systems setzt sich im Allgemeinen aus zwei Komponenten zusammen (s. #Der Drehimpuls eines starren Körpers):
Der Drehimpuls bezieht sich immer auf den Punkt im Raum, der als Bezugspunkt der Drehbewegung gewählt wird. Bei einem frei rotierenden System wird als Bezugspunkt oft der Schwerpunkt festgelegt, in der Astronomie meist der Schwerpunkt des Zentralgestirns. Wenn die Rotation durch ein Lager vorgegeben ist, wird meist ein Punkt auf der Achse gewählt.
Der Drehimpuls eines Massenpunkts lässt sich als Vektorprodukt aus dem Ortsvektor und dem Impuls des Massenpunkts berechnen:
Bei einem ausgedehnten Körper mit Trägheitstensor bezüglich seines Massenmittelpunkts und der Eigendrehgeschwindigkeit um diesen addiert sich noch sein Eigendrehimpuls:
In der Quantenmechanik wird der Drehimpuls durch den Drehimpulsoperator beschrieben. Dabei zeigt sich, dass er eine quantisierte Größe ist. Der Betrag des Drehimpulses ist stets ein ganz- oder halbzahliges Vielfaches der reduzierten Planck-Konstante. Die Ausrichtung des Drehimpulses ist ebenfalls gequantelt. Sie unterliegt der Richtungsquantelung in Bezug auf die Quantisierungsachse. Die Rolle des Eigendrehimpulses wird vom Spin wahrgenommen, der nicht mit einer räumlichen Bewegung verbunden ist. Somit setzt sich der Drehimpulsoperator aus den Komponenten Bahndrehimpulsoperator und Spinoperator zusammen.
Leonhard Euler führte 1775 den Drallsatz als ein fundamentales von den Newton’schen Gesetzen unabhängiges Prinzip in der Mechanik ein.[1] Er besagt, dass ein Drehmoment auf das System einwirken muss, um den Drehimpuls zu ändern. Die Drehimpulserhaltung lässt sich im Alltag an vielen Stellen erfahren (siehe Video, oder Pirouetteneffekt).
Referenzfehler: <ref>
-Tags existieren für die Gruppe A, jedoch wurde kein dazugehöriges <references group="A" />
-Tag gefunden.