∈
Ein Element (von lateinisch elementum, Lehnübersetzung von griechisch stoīcheĩa bzw. stoichẹjon„Reihenglied, Grundbestandteil“[1][2]) in der Mathematik ist immer im Rahmen der Mengenlehre oder Klassenlogik zu verstehen.
Die grundlegende Relation, wenn x ein Element ist und M eine Menge oder Klasse ist, lautet:
- „x ist Element von M“ oder mit Hilfe des Elementzeichens „x ∈ M“.
Die Mengendefinition von Georg Cantor beschreibt anschaulich, was unter einem Element im Zusammenhang mit einer Menge zu verstehen ist:
- „Unter einer ‚Menge‘ verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die ‚Elemente‘ von M genannt werden) zu einem Ganzen.“[3]
Diese anschauliche Mengenauffassung der naiven Mengenlehre erwies sich als nicht widerspruchsfrei.
Heute wird daher eine axiomatische Mengenlehre benutzt, meist die Zermelo-Fraenkel-Mengenlehre, teilweise auch eine allgemeinere Klassenlogik.
- ↑ Friedrich Kluge, Alfred Götze: Etymologisches Wörterbuch der deutschen Sprache. 20. Auflage. Hrsg. von Walther Mitzka. De Gruyter, Berlin / New York 1967; Neudruck („21. unveränderte Auflage“) ebenda 1975, ISBN 3-11-005709-3, S. 162 f.
- ↑ Franz Dornseiff: Die griechischen Wörter im Deutschen. Berlin 1950, S. 31.
- ↑ Georg Cantor: Beiträge zur Begründung der transfiniten Mengenlehre. In: Mathematische Annalen. Bd. 46, Nr. 4, ISSN 0025-5831, S. 481–512, doi:10.1007/BF02124929.