Geometrische Muster in der islamischen Kunst

Eine Fläche dekorativ mit geometrisch konstruierten Mustern auszufüllen ist Teil der bildenden Kunst vieler Kulturen. In der Islamischen Kunst erreichte diese Form der Ornamentik eine besondere Ausprägung und Vollendung. In jüngerer Zeit fanden die Ornamente das verstärkte Interesse europäischer Künstler wie M. C. Escher, Mathematiker wie Peter Lu und Physiker wie Paul Steinhardt.[1]

Girih-Fliesenmuster, Schah-i-Zinda-Baukomplex in Samarkand, Usbekistan

Islamische geometrische Muster sind aus sich wiederholenden vieleckigen oder kreisförmigen Teilflächen aufgebaut, die sich überdecken oder miteinander verflochten sind und komplizierte Muster bilden, oft in Form einer mathematischen Parkettierung. Im Lauf der Zeit wurden die geometrischen Konstruktionen immer komplexer. Sie können für sich allein stehend ein dekoratives Ornament bilden, einen Rahmen für andere (florale oder kalligrafische) Ornamente, oder den Hintergrund ausfüllen.

Zusammen mit der Arabeske, einem flächig stilisierten Rankenornament aus sich gabelnden Blättern in schwingender Bewegung, und kalligrafischen Inschriften sind geometrische Muster charakteristisch für die islamische Kunst. Typisch für diese ist, dass die Muster und Ornamente, einmal entwickelt und in ihrer Konstruktion verstanden, zur Dekoration unterschiedlicher Gegenstände verwendet wurden. In großer Vielfalt finden sich geometrische Elemente in der islamischen Architektur, so in den Mustern persischer Girih-Fliesen, marokkanischem Zellij-Fliesenwerk, den Architekturelementen der Muqarnas im Westen der islamischen Welt und den indischen Jali, aber auch in der keramischen Kunst, in Buchdeckeln aus geprägtem Leder, geschnitzt in Holz, auf Metall und in Stoffen, Geweben, Teppichen und Flachgeweben.

Die moderne Diskussion, ob alle 17 bekannten mathematischen Ornamentgruppen in der Alhambra vorkommen oder nicht, zeigt, wie weit die Erfindungskraft der islamischen Künstler schon im 15. Jahrhundert die Grenzen des auch nach modernem Verständnis mathematisch Möglichen ausgelotet hat.[2]

  1. Peter J. Lu and Paul J. Steinhardt: Decagonal and Quasi-crystalline Tilings in Medieval Islamic Architecture. In: Science. 315. Jahrgang, 2007, S. 1106–1110, doi:10.1126/science.1135491 (sciencemag.org [abgerufen am 12. Oktober 2015]). Vorlage:Cite journal: Der Parameter language wurde bei wahrscheinlich fremdsprachiger Quelle nicht angegeben.
  2. Branko Grünbaum: What Symmetry Groups Are Present in the Alhambra? In: Notices of the American Mathematical Society. Bd. 53, Nr. 6, 2006, ISSN 0002-9920, S. 670–673, Digitalisat (PDF; 2 MB).

Developed by StudentB