Eine Lie-Gruppe (auch Lie'sche Gruppe), benannt nach Sophus Lie,[1] ist eine mathematische Struktur. Formal handelt es sich bei einer Lie-Gruppe um eine Gruppe, die auch eine differenzierbare Mannigfaltigkeit ist, sodass die Gruppenverknüpfung und Inversenbildung kompatibel mit der glatten Struktur sind, das bedeutet
- und
sind glatte Funktionen.
Lie-Gruppen werden zur Beschreibung von kontinuierlichen Symmetrien verwendet.[2]
Lie-Gruppen und Lie-Algebren wurden um 1870 von Sophus Lie in der Lie-Theorie zur Untersuchung von Symmetrien in Differentialgleichungen eingeführt. Unabhängig von Lie entwickelte Wilhelm Killing ähnliche Ideen zum Studium nichteuklidischer Geometrien. Die älteren Bezeichnungen stetige Gruppe oder kontinuierliche Gruppe für eine Lie-Gruppe beschreiben besser das, was man heute unter einer topologischen Gruppe versteht. Jede Lie-Gruppe ist auch eine topologische Gruppe.
Dieser Artikel behandelt (der üblichen Terminologie folgend) endlich-dimensionale Lie-Gruppen. Es gibt auch eine Theorie unendlich-dimensionaler Lie-Gruppen, beispielsweise Banach-Lie-Gruppen.
Lie-Gruppen sind in fast allen Teilen der heutigen Mathematik sowie in der theoretischen Physik, vor allem der Teilchenphysik, wichtige Werkzeuge.
- ↑ Zuerst von dessen Doktoranden Arthur Tresse in seiner Dissertation 1893, Acta Mathematica
- ↑ Grob gesprochen ist eine Lie-Gruppe eine Gruppe, die ein Kontinuum bzw. ein stetig zusammenhängendes Ganzes bildet. Ein einfaches Beispiel für eine Lie-Gruppe ist die Gesamtheit aller Drehungen einer Ebene um einen fest ausgezeichneten Punkt, der in dieser Ebene liegt: Alle diese Drehungen bilden zusammen eine Gruppe, aber auch ein Kontinuum in dem Sinne, dass sich jede dieser Drehungen eindeutig durch einen Winkel zwischen 0° und 360° Grad bzw. ein Bogenmaß zwischen 0 und 2π beschreiben lässt und in dem Sinne, dass Drehungen, die sich nur um kleine Winkel voneinander unterscheiden, kontinuierlich ineinander überführbar sind. Ein Kreis, der in der betrachteten Ebene liegt und den fest ausgezeichneten Punkt als seinen Mittelpunkt besitzt, ist dann aus Sicht dieser Lie-Gruppe als symmetrisch zu bezeichnen, da er unter jeder Drehung unverändert bleibt. Hingegen ist ein Rechteck, dessen Mittelpunkt mit dem festgelegten Punkt übereinstimmt, aus Sicht der vorliegenden Lie-Gruppe nicht symmetrisch. Mit der angegebenen Lie-Gruppe lassen sich also Figuren der Ebene beschreiben, die eine „Drehsymmetrie“ aufweisen.