Lokalkompakter Raum

Im mathematischen Teilgebiet der Topologie sind die lokalkompakten Räume (auch lokal kompakten Räume) eine Klasse topologischer Räume, die eine gewisse lokale Endlichkeitsbedingung erfüllen. Sie wurden 1924 von Heinrich Tietze und Pawel Sergejewitsch Alexandrow unabhängig voneinander eingeführt. Die beiden Mathematiker erkannten auch, dass sich das aus der Funktionentheorie bekannte Verfahren, die gaußsche Zahlenebene zur riemannschen Zahlenkugel abzuschließen, auf die Klasse der lokalkompakten Räume übertragen lässt. Dieses Verfahren heißt daher auch Alexandroff-Kompaktifizierung.[1]

  1. Boto von Querenburg: Mengentheoretische Topologie. 3. neu bearbeitete und erweiterte Auflage. Springer-Verlag, Berlin u. a. 2001, ISBN 3-540-67790-9, S. 330.

Developed by StudentB