Mechanische Spannung

Physikalische Größe
Name mechanische Spannung
Formelzeichen (Normalspannungen),
(Schub- oder Scherspannungen)
Größen- und
Einheitensystem
Einheit Dimension
SI Pascal; Pa = N/ M·L−1·T−2
Siehe auch: Druck

Die mechanische Spannung (Formelzeichen (kleines Sigma) und (kleines Tau), englisch stress, französisch contrainte) ist ein Maß für die innere Beanspruchung eines Körpers infolge seiner Belastung. Da innerhalb der Mechanik keine Verwechslungsgefahr mit der elektrischen Spannung besteht, wird sie kurz als Spannung bezeichnet.

Die mechanische Normal-Spannung auf einer gedachten Schnittfläche  (engl. area) durch einen Körper ist die senkrecht auf sie wirkende Komponente  einer äußeren Kraft  (engl. force):[1]

.

Ist die Kraft von der Grenzfläche weg gerichtet, spricht man von einer Zugspannung (kurz: Zug), ist sie auf sie zu gerichtet von einer Druckspannung (kurz: Druck). Die Vorzeichenkonvention ist jedoch nicht einheitlich. Biegespannungen sind eine Kombination aus Druck- und Zugspannungen.

Die mechanische Schub- oder Scherspannung in einer gedachten Schnittfläche  durch einen Körper ist die auf sie bezogene in ihr verlaufende Komponente  (Querkraft) einer äußeren Kraft :

,      (Näherungsgleichung: Schubspannung ist über Fläche nicht konstant und am Flächenrand immer null).

Die mechanische Spannung ist von derselben physikalischen Größenart wie der Druck, nämlich Kraft pro Fläche. In ruhenden Flüssigkeiten und Gasen ist Druck eine in allen Raumrichtungen gleichermaßen wirkende Normalspannung.

Im Maschinen- und konstruktiven Ingenieurbau erfordert die Dimensionierung von Objekten die Kenntnis der auftretenden mechanischen Spannungen. Als Komponenten des Spannungstensors kommen die mechanischen Spannungen in physikalischen Gesetzen vor. Die Definition des Spannungsbegriffs geht auf Cauchy (1823) zurück.[2]

  1. H. Balke: Einführung in die Technische Mechanik. Festigkeitslehre. 2014, S. 32.
  2. Karl-Eugen Kurrer: The History of the Theory of Structures. Searching for Equilibrium. Ernst & Sohn, Berlin, ISBN 978-3-433-03229-9, S. 396.

Developed by StudentB