Parabel (Mathematik)

Parabel mit Brennpunkt , Scheitelpunkt und Leitlinie

In der Mathematik ist eine Parabel (über lateinisch parabola von altgriechisch παραβολή parabolḗ „Nebeneinanderstellung, Vergleichung, Gleichnis, Gleichheit“; zurückzuführen auf παρά pará „neben“ und βάλλειν bállein „werfen“)[1] eine Kurve zweiter Ordnung und ist daher über eine algebraische Gleichung zweiten Grades beschreibbar. Neben dem Kreis, der Ellipse und der Hyperbel zählt sie zu den Kegelschnitten: Sie entsteht beim Schnitt eines geraden Kreiskegels mit einer Ebene, die parallel zu einer Mantellinie verläuft und nicht durch die Kegelspitze geht. Aufgrund dieser sehr speziellen Schnittvoraussetzung spielt die Parabel unter den Kegelschnitten eine besondere Rolle: Sie besitzt nur einen Brennpunkt und alle Parabeln sind zueinander ähnlich.

Die Parabel wurde von Menaichmos entdeckt und von Apollonios von Perge (etwa 265–190 v. Chr.) als parabolḗ[2] benannt.

Beispiele für Parabeln sind die aus der Schulmathematik bekannten Graphen quadratischer Funktionen .

Auch im täglichen Leben spielen Parabeln eine Rolle:

  • Die Funktionsweise von Parabolantennen und Parabolspiegeln beruht auf der geometrischen Eigenschaft der Parabel, parallel zu ihrer Achse einfallende Strahlen im Brennpunkt zu sammeln (siehe weiter unten).
  • Ein schräg nach oben geworfener Stein bewegt sich näherungsweise auf einer parabelförmigen Bahn, der Wurfparabel (s. hüpfender Ball, Springbrunnen). Dies hängt damit zusammen, dass Wurfbewegungen durch quadratische Funktionen beschrieben werden.
  • In einem Flugzeug, das sich entlang einer Wurfparabel bewegt, herrscht Schwerelosigkeit. Solche Parabelflüge werden zum Training von Astronauten verwendet.
  • In der Mathematik werden Parabeln häufig zur Approximation komplizierterer Funktionen verwendet, da sie nach den Geraden (Gleichung: ) die einfachsten gekrümmten Funktionsgraphen (Gleichung: ) sind und sich besser als Geraden an gekrümmte Funktionsgraphen anschmiegen können. Im CAD-Bereich (Computer Aided Design) treten Parabeln als Bézierkurven auf. Ein Vorteil der Parabeln gegenüber Kreisen, Ellipsen und Hyperbeln besteht darin, dass man sie als Funktionsgraph von Polynomfunktionen 2. Grades beschreiben kann.
  1. Wilhelm Gemoll: Griechisch-Deutsches Schul- und Handwörterbuch. G. Freytag Verlag/Hölder-Pichler-Tempsky, München/Wien 1965.
  2. Peter Proff: Die Deutung der Begriffe „Ellipse“, „Parabel“ und „Hyperbel“ nach Apollonios v. Perge. In: Gundolf Keil (Hrsg.): „gelêrter der arzeniê, ouch apotêker“. Beiträge zur Wissenschaftsgeschichte. Festschrift zum 70. Geburtstag von Willem F. Daems. Horst Wellm Verlag, Pattensen/Hannover 1982 (= Würzburger medizinhistorische Forschungen, 24), ISBN 3-921456-35-5, S. 17–34; hier S. 17.

Developed by StudentB