Propagatoren sind spezielle Greensche Funktionen , also spezielle Lösungsfunktionen bestimmter partieller Differentialgleichungen, wie sie in der Physik (etwa in der Quantenelektrodynamik) vorkommen. Da Propagatoren an zwei Punkten singulär sind, werden sie auch Zweipunktfunktionen genannt. Sie können als Wahrscheinlichkeitsamplitude dafür interpretiert werden, dass ein Teilchen bzw. eine Welle von x nach y propagiert, d. h. sich ausbreitet, sich fortpflanzt bzw. fortschreitet. Je nach Differentialgleichung mit ihren Rand- und Anfangsbedingungen ergeben sich verschiedene Propagatoren, beispielsweise der Ein-Elektron-Propagator.[1]
In Feynman-Diagrammen werden Propagatoren bildlich-geometrisch (aber exakt) als Linien (und Vertices als Knotenpunkte) dargestellt.
Die Quantenelektrodynamik ist die quantisierte Form einer Feldtheorie, welche jeweils ein Maxwell- und ein Dirac-Feld enthält, die miteinander gekoppelt sind. Sowohl Elektron- als auch Photon-Propagator werden jeweils durch eine 4×4-Matrix dargestellt, da die zugehörigen Differentialoperatoren ebenfalls aus 4×4-Matrizen bestehen und Propagator bzw. Greenfunktion sowie Differentialoperator zueinander reziprok sind.