Quantenpunkt

Quantenpunkte (englisch quantum dots, QDs) sind mesoskopische Systeme an der Schwelle zwischen der klassisch beschreibbaren makroskopischen Welt und dem den Gesetzen der Quantenmechanik gehorchenden Mikrokosmos (meso griech. μέσο- mittel, zwischen). Sie bestehen typischerweise in einer kleinen Region eines Halbleitermaterials mit Abmessungen im Bereich von 100 nm und werden daher auch Nanokristalle (engl. nanocrystals) genannt. Strukturen dieser Größenordnung heißen allgemein Nanostrukturen, zu denen z. B. Quantendrähte sowie Kohlenstoffnanoröhren gehören.[1]

Ein System heißt mesoskopisch, wenn die Kohärenzlänge eines Ladungsträgers größer oder gleich mit den Abmessungen des Systems ist (). Die Kohärenzlänge ist die Distanz, die der Ladungsträger typischerweise im System zurücklegt, bevor durch Kopplung mit der Umgebung die Kohärenz verloren geht und der Ladungsträger damit seinen kohärenten quantenmechanischen Zustand verliert.[1]

Ein Quantenpunkt besitzt eine nanoskopische Materialstruktur, meist aus Halbleitermaterial (z. B. InGaAs, CdSe oder auch GaInP/InP). Ladungsträger (Elektronen, Löcher) in einem Quantenpunkt sind in ihrer Beweglichkeit in allen drei Raumrichtungen so weit eingeschränkt, dass ihre Energie nicht mehr kontinuierliche, sondern nur noch diskrete Werte annehmen kann, wodurch Quantenpunkte mit einzelnen Atomen vergleichbare Quanteneffekte zeigen (siehe auch Effekt der Dimensionsreduktion). Das Spektrum eines Quantenpunkts gleicht dem eines Atoms, allerdings können beispielsweise Form, Größe und Zusammensetzung von Quantenpunkten oder ihr Ladungszustand (Anzahl der darin gefangenen Elektronen) beeinflusst werden. Dadurch lassen sich elektronische und optische Eigenschaften von Quantenpunkten maßschneidern. Je nach Herstellungsmethode besteht ein einzelner Quantenpunkt aus etwa 104 bis 106 Atomen.

Wegen ihrer diskreten Energiespektren werden Quantenpunkte häufig auch als künstliche Atome bezeichnet[2] denn die Elektronen darin besitzen – genau wie in realen Atomen – quantisierte Zustände mit diskreten Energien.[3] Der Unterschied zu natürlichen Atomen ist, dass die Energieniveaus sogar exakt durch die experimentellen Parameter einstellbar sind.[2] Quantenpunkte aus Halbleiterkristallen sind winzige, aus nur einigen zehntausend Atomen bestehende abgegrenzte Bereiche – noch hundertmal kleiner als die derzeitigen Bauelemente der Mikroelektronik. Mit ihren Abmessungen von nur wenigen Nanometern (millionstel Millimeter) besitzen diese ultrakleinen Systeme grundlegend neue physikalische Eigenschaften. Bereits bei Zimmertemperatur wirken Quantenpunkte als Käfige für Elektronen. Darin können sich die Ladungsträger nicht mehr frei bewegen, ihre Energie ist vollständig „quantisiert“. Quanteneffekte bestimmen in solchen Nanokristallen aus Halbleitermaterial das Verhalten.[4] Dabei zeigen sich interessante Eigenschaften im elektrischen Transport und in der Wechselwirkung mit Licht.[5]

Räumlich fixiert, können Quantenpunkte auf vielfältige Weise miteinander wechselwirken, so auch „künstliche Moleküle“ bilden.[5] Gelingt es, mehrere einzelne Quantenpunkte in unmittelbarer Nähe zueinander anzuordnen, so dass Ladungsträger (v. a. Elektronen) über kohärente Tunnelprozesse von einem in den nächsten Quantenpunkt gelangen können, so spricht man von Quantenpunktmolekülen. stehend aus mehreren gekoppelten Quantenpunkten lassen sich herstellen.

Quantenpunkte können aus verschiedenen Materialien hergestellt werden, einschließlich Halbleitern, Metallen und organischen Molekülen. Die Eigenschaften eines Quantenpunkts hängen von seiner Größe, Form und Zusammensetzung ab, und sie können durch gezielte Veränderungen dieser Parameter gesteuert werden.

Im Jahr 2023 erhielten Moungi Bawendi, Louis Brus und Alexei Jekimow für ihre Forschungen auf diesem Gebiet den Nobelpreis für Chemie.

  1. a b Hildegard Uecker, Andreas Sorge: Seminar Quantenmechanik II. Hrsg.: Institut für Theoretische Physik Georg-August-Universität Göttingen. 2006, S. 1 (uni-6goettingen.de [PDF]).
  2. a b Hildegard Uecker, Andreas Sorge: Seminar Quantenmechanik II. Hrsg.: Institut für Theoretische Physik Georg-August-Universität Göttingen. 2006, S. 3 (uni-6goettingen.de [PDF]).
  3. Einheitliche Quantenpunkte hergestellt. In: Welt der Physik. Paul-Drude-Institut für Festkörperelektronik, 30. Juni 2014, abgerufen am 22. Juni 2024.
  4. Die atomare Struktur von Quantenpunkten. In: Welt der Physik. Februar 2001, abgerufen am 22. Juni 2024.
  5. a b Peter Michler, Sven Marcus Ulrich, Jürgen Weis: Künstliche Atome und Moleküle maßgeschneidert aus Festkörpern. In: Themenheft Forschung: Quantenmaterie. Nr. 5, 2008 (uni-stuttgart.de [PDF]).

Developed by StudentB