Synthetische Geometrie ist der Zweig der Geometrie, der von geometrischen Axiomen und Theoremen ausgeht und häufig synthetische Betrachtungen bzw. Konstruktionsmethoden benutzt – im Unterschied zur analytischen Geometrie, in der algebraische Strukturen wie Körper und Vektorräume bereits zur Definition von geometrischen Strukturen verwendet werden.
Die moderne synthetische Geometrie geht von axiomatisch formulierten „geometrischen“ Grundsätzen aus, die die geometrischen Objekte, Punkte, Geraden, Ebenen usw. implizit durch ihre Beziehungen zueinander definieren, und untersucht die logischen Abhängigkeiten zwischen unterschiedlich formulierten Axiomensystemen. Dabei werden die geometrischen Axiome meistens durch algebraische Strukturen (Koordinatenmengen im weitesten Sinne oder strukturerhaltende Abbildungen, wie Kollineationen) modelliert und damit in die moderne Mathematik eingegliedert, die auf der Mengenlehre beruht und aus dem Anschauungsraum geschöpfte Evidenzargumente, wie sie für Euklid noch selbstverständlich waren, aus Beweisen ausschließt.