Die theoretische Informatik beschäftigt sich mit der Abstraktion, Modellbildung und grundlegenden Fragestellungen, die mit der Struktur, Verarbeitung, Übertragung und Wiedergabe von Informationen in Zusammenhang stehen. Ihre Inhalte sind die Automatentheorie, die Theorie der formalen Sprachen, die Berechenbarkeits- und Komplexitätstheorie, aber auch die Logik und formale Semantik sowie die Informations-, Algorithmen- und Datenbanktheorie.
Die theoretische Informatik wurde – von den Befürwortern dieser Wissenschaftskategorie – in die Strukturwissenschaften eingeordnet und bietet Grundlagen für die Definition, Verifikation und Ausführung der Programme von Programmiersprachen, den Bau der Compiler von Programmiersprachen – den Compilerbau – und die mathematische Formalisierung und Untersuchung von meist diskreten Problemstellungen und deren Modellen. Mit Hilfe mathematischer Abstraktion der Eigenschaften von gewonnenen Modellen ergaben sich nützliche Definitionen, Sätze, Beweise, Algorithmen, Anwendungen und Lösungen von bzw. zu Problemen. Die theoretische Informatik bildet mit ihren zeitlosen, mathematischen Wahrheiten und Methoden ein formales Skelett, das die Informatik in der Praxis mit konkreten Implementierungen durchdringt. Die theoretische Informatik identifizierte viele unlösbare Problemstellungen mittels der Berechenbarkeitstheorie und erlaubt, häufig mit konstruktiver Beweisführung der Komplexitätstheorie, die Abgrenzung der praktisch effizient lösbaren Probleme von denen, für die das Gegenteil gilt.
Zu den konstruktiven Methoden der theoretischen Informatik zählt auch das Entwerfen von formalen Systemen, Automaten, Graphen und Syntaxdiagrammen sowie das Festlegen von Grammatiken und Semantiken, um eine Problemstellung mit mathematischen Ausdrücken formal zu fassen und von der informellen Ebene abzuheben. Die Konstrukte beschreiben so die innere Logik eines Problems mit mathematisch-logischen Aussagen, was im Weiteren eine formale Untersuchung erlaubt und potenziell neue – durch Beweise gestützte – Aussagen und Algorithmen der formalen Modelle als Resultate erschließbar macht. Neben dem mathematischen Erkenntnisgewinn lassen sich manche der gefundenen Lösungen praktisch implementieren, um Menschen durch Maschinensemantik automatisierte Vorteile der Mathematik- und Computer-Nutzung zu verschaffen.