Trajektorie (Physik)

Die Bahnen der Planeten und Kometen um die Sonne sind annähernd ebene Ellipsen. Durch andere Planeten wird diese Bewegung mehr oder weniger stark gestört. Im Bild ist eine Umlaufbahn (rot) dargestellt, die gegenüber der Erdbahnebene (Ekliptik, grün) einen großen Neigungswinkel i hat.

Eine Trajektorie [tʁajɛkˈtoːʁiə], auch Bahnkurve, ein Pfad oder Weg, ist in der Physik der Verlauf der Raumkurve, entlang der sich ein Körper oder ein Punkt, beispielsweise der Schwerpunkt eines starren Körpers, bewegt. Bei einem makroskopischen Körper, etwa einem Geschoss oder einem Ball, spricht man auch von der Flugbahn. Im erweiterten Sinn ist die Trajektorie eine Kurve im n-dimensionalen Phasenraum.[1] Ein Integral der Bewegung ist eine Größe, die längs einer Trajektorie konstant ist. Die Integrale lassen auf den weiteren Bahnverlauf schließen und helfen bei der Lösung der Bewegungsgleichungen[2], wie beispielsweise die Spezifische Bahnenergie bei den Keplerbewegungen im Bild.

Bei Körpern, die Zwangsbedingungen unterliegen, wird die Form der Trajektorie mathematisch durch die Kinematik beschrieben; z. B. beschreibt ein Pendel einen Kreisbogen. Bei Körpern, die nur äußeren Kräften ausgesetzt sind, ergeben sich die Trajektorien als Lösungen von Differentialgleichungssystemen. Die Untersuchung der Trajektorie als des zeitabhängigen Verlaufs des Ortes in einem Bezugssystem ist Gegenstand der Kinetik.

  1. Gerthsen: Physik. 18. Auflage. Springer, 1995, ISBN 978-3-662-07467-1, S. 968 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. Gottfried Falk: Theoretische Physik auf der Grundlage einer allgemeinen Dynamik. Elementare Punktmechanik. 1. Band. Springer-Verlag, Berlin, Heidelberg 1966, DNB 456597212, S. 18 ff., doi:10.1007/978-3-642-94958-6.

Developed by StudentB