3D computer graphics

3D computer graphics, sometimes called CGI, 3-D-CGI or three-dimensional computer graphics, are graphics that use a three-dimensional representation of geometric data (often Cartesian) that is stored in the computer for the purposes of performing calculations and rendering digital images, usually 2D images but sometimes 3D images. The resulting images may be stored for viewing later (possibly as an animation) or displayed in real time.

3-D computer graphics, contrary to what the name suggests, are most often displayed on two-dimensional displays. Unlike 3D film and similar techniques, the result is two-dimensional, without visual depth. More often, 3-D graphics are being displayed on 3-D displays, like in virtual reality systems.

3-D graphics stand in contrast to 2-D computer graphics which typically use completely different methods and formats for creation and rendering.

3-D computer graphics rely on many of the same algorithms as 2-D computer vector graphics in the wire-frame model and 2-D computer raster graphics in the final rendered display. In computer graphics software, 2-D applications may use 3-D techniques to achieve effects such as lighting, and similarly, 3-D may use some 2-D rendering techniques.

The objects in 3-D computer graphics are often referred to as 3-D models. Unlike the rendered image, a model's data is contained within a graphical data file. A 3-D model is a mathematical representation of any three-dimensional object; a model is not technically a graphic until it is displayed. A model can be displayed visually as a two-dimensional image through a process called 3-D rendering, or it can be used in non-graphical computer simulations and calculations. With 3-D printing, models are rendered into an actual 3-D physical representation of themselves, with some limitations as to how accurately the physical model can match the virtual model.[1]

  1. ^ "3D computer graphics". ScienceDaily. Retrieved 2019-01-19.

Developed by StudentB