Absolute magnitude

In astronomy, absolute magnitude (M) is a measure of the luminosity of a celestial object on an inverse logarithmic astronomical magnitude scale; the more luminous (intrinsically bright) an object, the lower its magnitude number. An object's absolute magnitude is defined to be equal to the apparent magnitude that the object would have if it were viewed from a distance of exactly 10 parsecs (32.6 light-years), without extinction (or dimming) of its light due to absorption by interstellar matter and cosmic dust. By hypothetically placing all objects at a standard reference distance from the observer, their luminosities can be directly compared among each other on a magnitude scale. For Solar System bodies that shine in reflected light, a different definition of absolute magnitude (H) is used, based on a standard reference distance of one astronomical unit.

Absolute magnitudes of stars generally range from approximately −10 to +20. The absolute magnitudes of galaxies can be much lower (brighter).

The more luminous an object, the smaller the numerical value of its absolute magnitude. A difference of 5 magnitudes between the absolute magnitudes of two objects corresponds to a ratio of 100 in their luminosities, and a difference of n magnitudes in absolute magnitude corresponds to a luminosity ratio of 100n/5. For example, a star of absolute magnitude MV = 3.0 would be 100 times as luminous as a star of absolute magnitude MV = 8.0 as measured in the V filter band. The Sun has absolute magnitude MV = +4.83.[1] Highly luminous objects can have negative absolute magnitudes: for example, the Milky Way galaxy has an absolute B magnitude of about −20.8.[2]

As with all astronomical magnitudes, the absolute magnitude can be specified for different wavelength ranges corresponding to specified filter bands or passbands; for stars a commonly quoted absolute magnitude is the absolute visual magnitude, which uses the visual (V) band of the spectrum (in the UBV photometric system). Absolute magnitudes are denoted by a capital M, with a subscript representing the filter band used for measurement, such as MV for absolute magnitude in the V band.

An object's absolute bolometric magnitude (Mbol) represents its total luminosity over all wavelengths, rather than in a single filter band, as expressed on a logarithmic magnitude scale. To convert from an absolute magnitude in a specific filter band to absolute bolometric magnitude, a bolometric correction (BC) is applied.[3]

  1. ^ Cite error: The named reference SunAbs was invoked but never defined (see the help page).
  2. ^ Cite error: The named reference Karachentsev was invoked but never defined (see the help page).
  3. ^ Cite error: The named reference Flower1996 was invoked but never defined (see the help page).

Developed by StudentB