By a theorem of Sacks, the countable admissible ordinals are exactly those constructed in a manner similar to the Church–Kleene ordinal, but for Turing machines with oracles.[1] One sometimes writes for the -th ordinal that is either admissible or a limit of admissibles; an ordinal that is both is called recursively inaccessible.[4] There exists a theory of large ordinals in this manner that is highly parallel to that of (small) large cardinals (one can define recursively Mahlo ordinals, for example).[5] But all these ordinals are still countable. Therefore, admissible ordinals seem to be the recursive analogue of regular cardinal numbers.
Notice that α is an admissible ordinal if and only if α is a limit ordinal and there does not exist a γ < α for which there is a Σ1(Lα) mapping from γ onto α.[6] is an admissible ordinal iff there is a standard model of KP whose set of ordinals is , in fact this may be take as the definition of admissibility.[7][8] The th admissible ordinal is sometimes denoted by [9][8]p. 174 or .[10]
The Friedman-Jensen-Sacks theorem states that countable is admissible iff there exists some such that is the least ordinal not recursive in .[11] Equivalently, for any countable admissible , there is an making minimal such that is an admissible structure.[12]p. 264
^ abFriedman, Sy D. (1985), "Fine structure theory and its applications", Recursion theory (Ithaca, N.Y., 1982), Proc. Sympos. Pure Math., vol. 42, Amer. Math. Soc., Providence, RI, pp. 259–269, doi:10.1090/pspum/042/791062, MR0791062. See in particular p. 265.
^G. E. Sacks, Higher Recursion Theory (p.151). Association for Symbolic Logic, Perspectives in Logic
^Friedman, Sy D. (2010), "Constructibility and class forcing", Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, pp. 557–604, doi:10.1007/978-1-4020-5764-9_9, MR2768687. See in particular p. 560.
^Kahle, Reinhard; Setzer, Anton (2010), "An extended predicative definition of the Mahlo universe", Ways of proof theory, Ontos Math. Log., vol. 2, Ontos Verlag, Heusenstamm, pp. 315–340, MR2883363.