Amplified fragment length polymorphism

Example of AFLP data from a capillary electrophoresis instrument

Amplified fragment length polymorphism (AFLP-PCR or AFLP) is a PCR-based tool used in genetics research, DNA fingerprinting, and in the practice of genetic engineering. Developed in the early 1990s by KeyGene,[1] AFLP uses restriction enzymes to digest genomic DNA, followed by ligation of adaptors to the sticky ends of the restriction fragments. A subset of the restriction fragments is then selected to be amplified. This selection is achieved by using primers complementary to the adaptor sequence, the restriction site sequence and a few nucleotides inside the restriction site fragments (as described in detail below). The amplified fragments are separated and visualized on denaturing on agarose gel electrophoresis, either through autoradiography or fluorescence methodologies, or via automated capillary sequencing instruments.

Although AFLP should not be used as an acronym, it is commonly referred to as "Amplified fragment length polymorphism". However, the resulting data are not scored as length polymorphisms, but instead as presence-absence polymorphisms.[2]

AFLP-PCR is a highly sensitive method for detecting polymorphisms in DNA. The technique was originally described by Vos and Zabeau in 1993.[3][2] In detail, the procedure of this technique is divided into three steps:

  1. Digestion of total cellular DNA with one or more restriction enzymes and ligation of restriction half-site specific adaptors to all restriction fragments.
  2. Selective amplification of some of these fragments with two PCR primers that have corresponding adaptor and restriction site specific sequences.
  3. Electrophoretic separation of amplicons on a gel matrix, followed by visualisation of the band pattern.
  1. ^ "Keygene.com". Retrieved 10 February 2013.
  2. ^ a b Vos P, Hogers R, Bleeker M, et al. (November 1995). "AFLP: a new technique for DNA fingerprinting". Nucleic Acids Res. 23 (21): 4407–14. doi:10.1093/nar/23.21.4407. PMC 307397. PMID 7501463.
  3. ^ Zabeau, M and P. Vos. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Office, publication 0 534 858 A1, bulletin 93/13.

Developed by StudentB