Aromatase excess syndrome

Aromatase excess syndrome
Other namesHereditary prepubertal gynecomastia
AEXS results when the function of aromatase is hyperactive. The aromatase protein (pictured) is responsible for the biosynthesis of estrogens like estradiol in the human body.
SpecialtyEndocrinology

Aromatase excess syndrome (AES or AEXS) is a rarely diagnosed genetic and endocrine syndrome which is characterized by an overexpression of aromatase, the enzyme responsible for the biosynthesis of the estrogen sex hormones from the androgens, in turn resulting in excessive levels of circulating estrogens and, accordingly, symptoms of hyperestrogenism. It affects both sexes, manifesting itself in males as marked or complete phenotypical feminization (with the exception of the genitalia; i.e., no ambiguous genitalia) and in females as hyperfeminization.[1][2][3][4]

To date, 30 males and 8 females with AEXS among 15 and 7 families, respectively, have been described in the medical literature.[1][2]

  1. ^ a b Shozu, Makio; Fukami, Maki; Ogata, Tsutomu (2014). "Understanding the pathological manifestations of aromatase excess syndrome: lessons for clinical diagnosis". Expert Review of Endocrinology & Metabolism. 9 (4): 397–409. doi:10.1586/17446651.2014.926810. ISSN 1744-6651. PMC 4162655. PMID 25264451.
  2. ^ a b Martin, Regina M.; Lin, Chin J.; Nishi, Mirian Y.; Billerbeck, Ana Elisa C.; Latronico, Ana Claudia; Russell, David W.; Mendonca, Berenice B. (2003). "Familial Hyperestrogenism in Both Sexes: Clinical, Hormonal, and Molecular Studies of Two Siblings". The Journal of Clinical Endocrinology & Metabolism. 88 (7): 3027–3034. doi:10.1210/jc.2002-021780. ISSN 0021-972X. PMID 12843139.
  3. ^ Stratakis CA, Vottero A, Brodie A, et al. (April 1998). "The aromatase excess syndrome is associated with feminization of both sexes and autosomal dominant transmission of aberrant P450 aromatase gene transcription". The Journal of Clinical Endocrinology and Metabolism. 83 (4): 1348–57. doi:10.1210/jcem.83.4.4697. PMID 9543166. S2CID 5723607.
  4. ^ Gregory Makowski (22 April 2011). Advances in Clinical Chemistry. Academic Press. p. 158. ISBN 978-0-12-387025-4. Retrieved 24 May 2012.

Developed by StudentB