Arterial blood gas test

Arterial-blood gas test
MeSHD001784
MedlinePlus003855
LOINC24336-0

An arterial blood gas (ABG) test, or arterial blood gas analysis (ABGA) measures the amounts of arterial gases, such as oxygen and carbon dioxide. An ABG test requires that a small volume of blood be drawn from the radial artery with a syringe and a thin needle,[1] but sometimes the femoral artery in the groin or another site is used. The blood can also be drawn from an arterial catheter.

An ABG test measures the blood gas tension values of the arterial partial pressure of oxygen (PaO2), and the arterial partial pressure of carbon dioxide (PaCO2), and the blood's pH. In addition, the arterial oxygen saturation (SaO2) can be determined. Such information is vital when caring for patients with critical illnesses or respiratory disease. Therefore, the ABG test is one of the most common tests performed on patients in intensive-care units. In other levels of care, pulse oximetry plus transcutaneous carbon-dioxide measurement is a less invasive, alternative method of obtaining similar information.[citation needed]

An ABG test can indirectly measure the level of bicarbonate in the blood. The bicarbonate level is calculated using the Henderson-Hasselbalch equation. Many blood-gas analyzers will also report concentrations of lactate, hemoglobin, several electrolytes, oxyhemoglobin, carboxyhemoglobin, and methemoglobin. ABG testing is mainly used in pulmonology and critical-care medicine to determine gas exchange across the alveolar-capillary membrane. ABG testing also has a variety of applications in other areas of medicine. Combinations of disorders can be complex and difficult to interpret, so calculators,[2] nomograms, and rules of thumb[3] are commonly used.

ABG samples originally were sent from the clinic to the medical laboratory for analysis. Newer equipment lets the analysis be done also as point-of-care testing, depending on the equipment available in each clinic.

  1. ^ Dr Colin Tidy (26 Jan 2015). "Arterial Blood Gases - Indications and Interpretation". Patient. Reviewed by Dr Adrian Bonsall. Retrieved 2017-01-02.
  2. ^ Baillie K. "Arterial Blood Gas Interpreter". prognosis.org. Archived from the original on 2013-03-12. Retrieved 2007-07-05. - Online arterial blood gas analysis
  3. ^ Baillie, JK (2008). "Simple, easily memorised 'rules of thumb' for the rapid assessment of physiological compensation for acid-base disorders". Thorax. 63 (3): 289–90. doi:10.1136/thx.2007.091223. PMID 18308967.

Developed by StudentB