Astronomical nutation

Astronomical nutation is a phenomenon which causes the orientation of the axis of rotation of a spinning astronomical object to vary over time. It is caused by the gravitational forces of other nearby bodies acting upon the spinning object. Although they are caused by the same effect operating over different timescales, astronomers usually make a distinction between precession, which is a steady long-term change in the axis of rotation, and nutation, which is the combined effect of similar shorter-term variations.[1]

An example of precession and nutation is the variation over time of the orientation of the axis of rotation of the Earth. This is important because the most commonly used frame of reference for measurement of the positions of astronomical objects is the Earth's equator — the so-called equatorial coordinate system. The effect of precession and nutation causes this frame of reference itself to change over time, relative to an arbitrary fixed frame.

Nutation is one of the corrections which must be applied to obtain the apparent place of an astronomical object. When calculating the position of an object, it is initially expressed relative to the mean equinox and equator — defined by the orientation of the Earth's axis at a specified date, taking into account the long-term effect of precession, but not the shorter-term effects of nutation. It is then necessary to apply a further correction to take into account the effect of nutation, after which the position relative to the true equinox and equator is obtained.

Because the dynamic motions of the planets are so well known, their nutations can be calculated to within arcseconds over periods of many decades. There is another disturbance of the Earth's rotation called polar motion that can be estimated for only a few months into the future because it is influenced by rapidly and unpredictably varying things such as ocean currents, wind systems, and hypothesised motions in the liquid nickel-iron outer core of the Earth.

  1. ^ Seidelmann, P. Kenneth, ed. (1992). Explanatory Supplement to the Astronomical Almanac. University Science Books. pp. 99–120. ISBN 0-935702-68-7.

Developed by StudentB