Augmented reality (AR) is an interactive experience that combines the real world and computer-generated 3D content. The content can span multiple sensory modalities, including visual, auditory, haptic, somatosensory and olfactory.[1] AR can be defined as a system that incorporates three basic features: a combination of real and virtual worlds, real-time interaction, and accurate 3D registration of virtual and real objects.[2] The overlaid sensory information can be constructive (i.e. additive to the natural environment), or destructive (i.e. masking of the natural environment).[3] As such, it is one of the key technologies in the reality-virtuality continuum.[4]
This experience is seamlessly interwoven with the physical world such that it is perceived as an immersive aspect of the real environment.[3] In this way, augmented reality alters one's ongoing perception of a real-world environment, whereas virtual reality completely replaces the user's real-world environment with a simulated one.[5][6]
The primary value of augmented reality is the manner in which components of the digital world blend into a person's perception of the real world, not as a simple display of data, but through the integration of immersive sensations, which are perceived as natural parts of an environment. The earliest functional AR systems that provided immersive mixed reality experiences for users were invented in the early 1990s, starting with the Virtual Fixtures system developed at the U.S. Air Force's Armstrong Laboratory in 1992.[3][7][8]Commercial augmented reality experiences were first introduced in entertainment and gaming businesses.[9] Subsequently, augmented reality applications have spanned commercial industries such as education, communications, medicine, and entertainment. In education, content may be accessed by scanning or viewing an image with a mobile device or by using markerless AR techniques.[10][11][12]
Augmented reality can be used to enhance natural environments or situations and offers perceptually enriched experiences. With the help of advanced AR technologies (e.g. adding computer vision, incorporating AR cameras into smartphone applications, and object recognition) the information about the surrounding real world of the user becomes interactive and digitally manipulated.[13] Information about the environment and its objects is overlaid on the real world. This information can be virtual. Augmented Reality is any experience which is artificial and which adds to the already existing reality.[14][15][16][17][18] or real, e.g. seeing other real sensed or measured information such as electromagnetic radio waves overlaid in exact alignment with where they actually are in space.[19][20][21] Augmented reality also has a lot of potential in the gathering and sharing of tacit knowledge. Augmentation techniques are typically performed in real-time and in semantic contexts with environmental elements. Immersive perceptual information is sometimes combined with supplemental information like scores over a live video feed of a sporting event. This combines the benefits of both augmented reality technology and heads up display technology (HUD).
^Time-frequency perspectives, with applications, in Advances in Machine Vision, Strategies and Applications, World Scientific Series in Computer Science: Volume 32, C Archibald and Emil Petriu, Cover + pp 99–128, 1992.
^Mann, Steve; Feiner, Steve; Harner, Soren; Ali, Mir Adnan; Janzen, Ryan; Hansen, Jayse; Baldassi, Stefano (15 January 2015). "Wearable Computing, 3D Aug* Reality, Photographic/Videographic Gesture Sensing, and Veillance". Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction - TEI '14. ACM. pp. 497–500. doi:10.1145/2677199.2683590. ISBN9781450333054. S2CID12247969.