In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space (over a field with an absolute value function ) is a set such that for all scalars satisfying
The balanced hull or balanced envelope of a set is the smallest balanced set containing The balanced core of a set is the largest balanced set contained in
Balanced sets are ubiquitous in functional analysis because every neighborhood of the origin in every topological vector space (TVS) contains a balanced neighborhood of the origin and every convex neighborhood of the origin contains a balanced convex neighborhood of the origin (even if the TVS is not locally convex). This neighborhood can also be chosen to be an open set or, alternatively, a closed set.