Binary classification

Binary classification is the task of classifying the elements of a set into one of two groups (each called class). Typical binary classification problems include:

When measuring the accuracy of a binary classifier, the simplest way is to count the errors. But in the real world often one of the two classes is more important, so that the number of both of the different types of errors is of interest. For example, in medical testing, detecting a disease when it is not present (a false positive) is considered differently from not detecting a disease when it is present (a false negative).

In this set of tested instances, the instances left of the divider have the condition being tested; the right half do not. The oval bounds those instances that a test algorithm classifies as having the condition. The green areas highlight the instances that the test algorithm correctly classified. Labels refer to:
TP=true positive; TN=true negative; FP=false positive (type I error); FN=false negative (type II error); TPR=set of instances to determine true positive rate; FPR=set of instances to determine false positive rate; PPV=positive predictive value; NPV=negative predictive value.

Developed by StudentB