This article needs attention from an expert in biochemistry. The specific problem is: someone with a solid grasp of the full scope of this subject and of its secondary and advanced teaching literatures needs to address A, the clear structural issues of the article (e.g., general absence of catabolic biosynthetic pathways, insertion of macromolecule anabolic paths before all building blocks covered, etc.); B, discrepancies in scope vs. other major articles, cf. Nucleic acid metabolism; C, remaining gross factual errors (only those in the lead having yet been superficially addressed); etc..WikiProject Biochemistry may be able to help recruit an expert.(July 2024)
The article's lead sectionmay need to be rewritten. The reason given is: to ensure, per WP:INTRO, that the lead properly summarises the article, and introduces no material that does not already appear validly and verifiably sourced to secondary sources within the article. Please help improve the lead and read the lead layout guide.(July 2024) (Learn how and when to remove this message)
Biosynthesis, i.e., chemical synthesis occurring in biological contexts, is a term most often referring to multi-step, enzyme-catalyzed processes where chemical substances absorbed as nutrients (or previously converted through biosynthesis) serve as enzyme substrates, with conversion by the living organism either into simpler or more complex products. Examples of biosynthetic pathways include those for the production of amino acids, lipid membrane components, and nucleotides, but also for the production of all classes of biological macromolecules, and of acetyl-coenzyme A, adenosine triphosphate, nicotinamide adenine dinucleotide and other key intermediate and transactional molecules needed for metabolism. Thus, in biosynthesis, any of an array of compounds, from simple to complex, are converted into other compounds, and so it includes both the catabolism and anabolism (building up and breaking down) of complex molecules (including macromolecules). Biosynthetic processes are often represented via charts of metabolic pathways. A particular biosynthetic pathway may be located within a single cellular organelle (e.g., mitochondrial fatty acid synthesis pathways), while others involve enzymes that are located across an array of cellular organelles and structures (e.g., the biosynthesis of glycosylated cell surface proteins).