The concept of boosting is based on the question posed by Kearns and Valiant (1988, 1989):[3][4] "Can a set of weak learners create a single strong learner?" A weak learner is defined as a classifier that is only slightly correlated with the true classification. A strong learner is a classifier that is arbitrarily well-correlated with the true classification. Robert Schapire answered the question in the affirmative in a paper published in 1990.[5] This has had significant ramifications in machine learning and statistics, most notably leading to the development of boosting.[6]
Initially, the hypothesis boosting problem simply referred to the process of turning a weak learner into a strong learner.[3] Algorithms that achieve this quickly became known as "boosting". Freund and Schapire's arcing (Adapt[at]ive Resampling and Combining),[7] as a general technique, is more or less synonymous with boosting.[8]
^Zhou Zhi-Hua (2012). Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC. p. 23. ISBN978-1439830031. The term boosting refers to a family of algorithms that are able to convert weak learners to strong learners
^Leo Breiman (1998); Arcing Classifier (with Discussion and a Rejoinder by the Author), Annals of Statistics, vol. 26, no. 3, pp. 801-849: "The concept of weak learning was introduced by Kearns and Valiant (1988, 1989), who left open the question of whether weak and strong learnability are equivalent. The question was termed the boosting problem since a solution 'boosts' the low accuracy of a weak learner to the high accuracy of a strong learner. Schapire (1990) proved that boosting is possible. A boosting algorithm is a method that takes a weak learner and converts it into a strong one. Freund and Schapire (1997) proved that an algorithm similar to arc-fs is boosting.