Classical mechanics

animation of orbital velocity and centripetal acceleration
Diagram of orbital motion of a satellite around the Earth, showing perpendicular velocity and acceleration (force) vectors, represented through a classical interpretation

Classical mechanics is a physical theory describing the motion of objects such as projectiles, parts of machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics involved substantial change in the methods and philosophy of physics.[1] The qualifier classical distinguishes this type of mechanics from physics developed after the revolutions in physics of the early 20th century, all of which revealed limitations in classical mechanics.[2]

The earliest formulation of classical mechanics is often referred to as Newtonian mechanics. It consists of the physical concepts based on the 17th century foundational works of Sir Isaac Newton, and the mathematical methods invented by Newton, Gottfried Wilhelm Leibniz, Leonhard Euler and others to describe the motion of bodies under the influence of forces. Later, methods based on energy were developed by Euler, Joseph-Louis Lagrange, William Rowan Hamilton and others, leading to the development of analytical mechanics (which includes Lagrangian mechanics and Hamiltonian mechanics). These advances, made predominantly in the 18th and 19th centuries, extended beyond earlier works; they are, with some modification, used in all areas of modern physics.

If the present state of an object that obeys the laws of classical mechanics is known, it is possible to determine how it will move in the future, and how it has moved in the past. Chaos theory shows that the long term predictions of classical mechanics are not reliable. Classical mechanics provides accurate results when studying objects that are not extremely massive and have speeds not approaching the speed of light. With objects about the size of an atom's diameter, it becomes necessary to use quantum mechanics. To describe velocities approaching the speed of light, special relativity is needed. In cases where objects become extremely massive, general relativity becomes applicable. Some modern sources include relativistic mechanics in classical physics, as representing the field in its most developed and accurate form.

  1. ^ Ben-Chaim, Michael (2004), Experimental Philosophy and the Birth of Empirical Science: Boyle, Locke and Newton, Aldershot: Ashgate, ISBN 0-7546-4091-4, OCLC 53887772.
  2. ^ Agar, Jon (2012), Science in the Twentieth Century and Beyond, Cambridge: Polity Press, ISBN 978-0-7456-3469-2.

Developed by StudentB