Coalbed methane

A German methane detector used for coal mining in the 1960s.

Coalbed methane (CBM or coal-bed methane),[1] coalbed gas, or coal seam gas (CSG[1]) is a form of natural gas extracted from coal beds.[2] In recent decades it has become an important source of energy in United States, Canada, Australia, and other countries.

The term refers to methane absorbed into the solid matrix of the coal. It is called 'sweet gas' because of its lack of hydrogen sulfide. The presence of this gas is well known from its occurrence in underground coal mining, where it presents a serious safety risk. Coalbed methane is distinct from a typical sandstone or other conventional gas reservoir, as the methane is stored within the coal by a process called adsorption. The methane is in a near-liquid state, lining the inside of pores within the coal (called the matrix). The open fractures in the coal (called the cleats) can also contain free gas or can be saturated with water.[citation needed]

Unlike much natural gas from conventional reservoirs, coalbed methane contains very little heavier hydrocarbons such as propane or butane, and no natural-gas condensate. It often contains up to a few percent carbon dioxide. Coalbed methane is generally formed due to thermal maturation of kerogen and organic matter, in contrast to coal seams with regular groundwater recharge where methane is typically generated by microbial communities living in situ.[3][4]

  1. ^ a b "Jargon Buster". BG Group. Archived from the original on 25 September 2012. Retrieved 18 July 2010.
  2. ^ Coal Gas, www.clarke-energy.com, retrieved 25.11.2011
  3. ^ Laubach, S. E; Marrett, R. A; Olson, J. E; Scott, A. R (1 February 1998). "Characteristics and origins of coal cleat: A review". International Journal of Coal Geology. 35 (1): 175–207. Bibcode:1998IJCG...35..175L. doi:10.1016/S0166-5162(97)00012-8. ISSN 0166-5162.
  4. ^ Saurabh, Suman; Harpalani, Satya (15 March 2018). "Modeling of microbial methane generation from coal and assessment of its impact on flow behavior". Fuel. 216: 274–283. doi:10.1016/j.fuel.2017.12.015. ISSN 0016-2361.

Developed by StudentB