Coccolithophore Paraphyletic grouping of algae Temporal range:
| |
---|---|
Coccolithus pelagicus | |
Scientific classification | |
Domain: | Eukaryota |
Clade: | Diaphoretickes |
Phylum: | Haptista |
Subphylum: | Haptophytina |
Class: | Prymnesiophyceae |
Groups included | |
Coccolithophores, or coccolithophorids, are single-celled organisms which are part of the phytoplankton, the autotrophic (self-feeding) component of the plankton community. They form a group of about 200 species, and belong either to the kingdom Protista, according to Robert Whittaker's five-kingdom system, or clade Hacrobia, according to a newer biological classification system. Within the Hacrobia, the coccolithophores are in the phylum or division Haptophyta, class Prymnesiophyceae (or Coccolithophyceae). Coccolithophores are almost exclusively marine, are photosynthetic and mixotrophic, and exist in large numbers throughout the sunlight zone of the ocean.
Coccolithophores are the most productive calcifying organisms on the planet, covering themselves with a calcium carbonate shell called a coccosphere. However, the reasons they calcify remain elusive. One key function may be that the coccosphere offers protection against microzooplankton predation, which is one of the main causes of phytoplankton death in the ocean.[1]
Coccolithophores are ecologically important, and biogeochemically they play significant roles in the marine biological pump and the carbon cycle.[2][1] Depending on habitat, they can produce up to 40 percent of the local marine primary production.[3] They are of particular interest to those studying global climate change because, as ocean acidity increases, their coccoliths may become even more important as a carbon sink.[4] Management strategies are being employed to prevent eutrophication-related coccolithophore blooms, as these blooms lead to a decrease in nutrient flow to lower levels of the ocean.[5]
The most abundant species of coccolithophore, Emiliania huxleyi, belongs to the order Isochrysidales and family Noëlaerhabdaceae.[6] It is found in temperate, subtropical, and tropical oceans.[7] This makes E. huxleyi an important part of the planktonic base of a large proportion of marine food webs. It is also the fastest growing coccolithophore in laboratory cultures.[8] It is studied for the extensive blooms it forms in nutrient depleted waters after the reformation of the summer thermocline.[9][10] and for its production of molecules known as alkenones that are commonly used by earth scientists as a means to estimate past sea surface temperatures.[11]
de Vries2021
was invoked but never defined (see the help page).Hay1967
was invoked but never defined (see the help page).