Confusion matrix

In the field of machine learning and specifically the problem of statistical classification, a confusion matrix, also known as error matrix,[1] is a specific table layout that allows visualization of the performance of an algorithm, typically a supervised learning one; in unsupervised learning it is usually called a matching matrix.

Each row of the matrix represents the instances in an actual class while each column represents the instances in a predicted class, or vice versa – both variants are found in the literature.[2] The diagonal of the matrix therefore represents all instances that are correctly predicted.[3] The name stems from the fact that it makes it easy to see whether the system is confusing two classes (i.e. commonly mislabeling one as another).

It is a special kind of contingency table, with two dimensions ("actual" and "predicted"), and identical sets of "classes" in both dimensions (each combination of dimension and class is a variable in the contingency table).

  1. ^ Stehman, Stephen V. (1997). "Selecting and interpreting measures of thematic classification accuracy". Remote Sensing of Environment. 62 (1): 77–89. Bibcode:1997RSEnv..62...77S. doi:10.1016/S0034-4257(97)00083-7.
  2. ^ Powers, David M. W. (2011). "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation". Journal of Machine Learning Technologies. 2 (1): 37–63. S2CID 55767944.
  3. ^ Opitz, Juri (2024). "A Closer Look at Classification Evaluation Metrics and a Critical Reflection of Common Evaluation Practice". Transactions of the Association for Computational Linguistics. 12: 820–836. arXiv:2404.16958. doi:10.1162/tacl_a_00675.

Developed by StudentB