Constructive proof

In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existence proof or pure existence theorem), which proves the existence of a particular kind of object without providing an example. For avoiding confusion with the stronger concept that follows, such a constructive proof is sometimes called an effective proof.

A constructive proof may also refer to the stronger concept of a proof that is valid in constructive mathematics. Constructivism is a mathematical philosophy that rejects all proof methods that involve the existence of objects that are not explicitly built. This excludes, in particular, the use of the law of the excluded middle, the axiom of infinity, and the axiom of choice, and induces a different meaning for some terminology (for example, the term "or" has a stronger meaning in constructive mathematics than in classical).[1]

Some non-constructive proofs show that if a certain proposition is false, a contradiction ensues; consequently the proposition must be true (proof by contradiction). However, the principle of explosion (ex falso quodlibet) has been accepted in some varieties of constructive mathematics, including intuitionism.

Constructive proofs can be seen as defining certified mathematical algorithms: this idea is explored in the Brouwer–Heyting–Kolmogorov interpretation of constructive logic, the Curry–Howard correspondence between proofs and programs, and such logical systems as Per Martin-Löf's intuitionistic type theory, and Thierry Coquand and Gérard Huet's calculus of constructions.

  1. ^ Bridges, Douglas; Palmgren, Erik (2018), "Constructive Mathematics", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Summer 2018 ed.), Metaphysics Research Lab, Stanford University, retrieved 2019-10-25

Developed by StudentB