Covariant derivative

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component (dependent on the embedding) and the intrinsic covariant derivative component.

The name is motivated by the importance of changes of coordinate in physics: the covariant derivative transforms covariantly under a general coordinate transformation, that is, linearly via the Jacobian matrix of the transformation.[1]

This article presents an introduction to the covariant derivative of a vector field with respect to a vector field, both in a coordinate-free language and using a local coordinate system and the traditional index notation. The covariant derivative of a tensor field is presented as an extension of the same concept. The covariant derivative generalizes straightforwardly to a notion of differentiation associated to a connection on a vector bundle, also known as a Koszul connection.

  1. ^ Einstein, Albert (1922). "The General Theory of Relativity". The Meaning of Relativity.

Developed by StudentB