Creation and annihilation operators

Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems.[1] An annihilation operator (usually denoted ) lowers the number of particles in a given state by one. A creation operator (usually denoted ) increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator. In many subfields of physics and chemistry, the use of these operators instead of wavefunctions is known as second quantization. They were introduced by Paul Dirac.[2]

Creation and annihilation operators can act on states of various types of particles. For example, in quantum chemistry and many-body theory the creation and annihilation operators often act on electron states. They can also refer specifically to the ladder operators for the quantum harmonic oscillator. In the latter case, the creation operator is interpreted as a raising operator, adding a quantum of energy to the oscillator system (similarly for the lowering operator). They can be used to represent phonons. Constructing Hamiltonians using these operators has the advantage that the theory automatically satisfies the cluster decomposition theorem.[3]

The mathematics for the creation and annihilation operators for bosons is the same as for the ladder operators of the quantum harmonic oscillator.[4] For example, the commutator of the creation and annihilation operators that are associated with the same boson state equals one, while all other commutators vanish. However, for fermions the mathematics is different, involving anticommutators instead of commutators.[5]

  1. ^ Feynman 1998, p. 151
  2. ^ Dirac, P. A. M. (1927). "The quantum theory of the emission and absorption of radiation", Proc Roy Soc London Ser A, 114 (767), 243-265.
  3. ^ Weinberg, Steven (1995). "4". The Quantum Theory of Fields Volume 1. Cambridge University Press. p. 169. ISBN 9780521670531.
  4. ^ Feynman 1998, p. 167
  5. ^ Feynman 1998, pp. 174–5

Developed by StudentB