Cuboctahedron | |
---|---|
Type | Archimedean solid |
Faces | 14 |
Edges | 24 |
Vertices | 12 |
Vertex configuration | 3.4.3.4 |
Symmetry group | Octahedral symmetry Tetrahedral symmetry |
Dihedral angle (degrees) | approximately 125° |
Dual polyhedron | Rhombic dodecahedron |
Properties | convex, vector equilibrium, Rupert property |
Vertex figure | |
Net | |
A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e., an Archimedean solid that is not only vertex-transitive but also edge-transitive.[1] It is radially equilateral. Its dual polyhedron is the rhombic dodecahedron.