Despite recent improvements, there are still difficulties in using density functional theory to properly describe: intermolecular interactions (of critical importance to understanding chemical reactions), especially van der Waals forces (dispersion); charge transfer excitations; transition states, global potential energy surfaces, dopant interactions and some strongly correlated systems; and in calculations of the band gap and ferromagnetism in semiconductors.[2] The incomplete treatment of dispersion can adversely affect the accuracy of DFT (at least when used alone and uncorrected) in the treatment of systems which are dominated by dispersion (e.g. interacting noble gas atoms)[3] or where dispersion competes significantly with other effects (e.g. in biomolecules).[4] The development of new DFT methods designed to overcome this problem, by alterations to the functional[5] or by the inclusion of additive terms,[6][7][8][9][10] is a current research topic. Classical density functional theory uses a similar formalism to calculate the properties of non-uniform classical fluids.
Despite the current popularity of these alterations or of the inclusion of additional terms, they are reported[11] to stray away from the search for the exact functional. Further, DFT potentials obtained with adjustable parameters are no longer true DFT potentials,[12] given that they are not functional derivatives of the exchange correlation energy with respect to the charge density. Consequently, it is not clear if the second theorem of DFT holds[12][13] in such conditions.
^Weisstein, Eric W. "Functional". mathworld.wolfram.com. Retrieved 2024-10-05.
^Van Mourik, Tanja; Gdanitz, Robert J. (2002). "A critical note on density functional theory studies on rare-gas dimers". Journal of Chemical Physics. 116 (22): 9620–9623. Bibcode:2002JChPh.116.9620V. doi:10.1063/1.1476010.
^Vondrášek, Jiří; Bendová, Lada; Klusák, Vojtěch; Hobza, Pavel (2005). "Unexpectedly strong energy stabilization inside the hydrophobic core of small protein rubredoxin mediated by aromatic residues: correlated ab initio quantum chemical calculations". Journal of the American Chemical Society. 127 (8): 2615–2619. doi:10.1021/ja044607h. PMID15725017.
^Grimme, Stefan (2004). "Accurate description of van der Waals complexes by density functional theory including empirical corrections". Journal of Computational Chemistry. 25 (12): 1463–1473. doi:10.1002/jcc.20078. PMID15224390. S2CID6968902.