Differential scanning calorimetry

Differential Scanning calorimetry
Differential scanning calorimeter
AcronymDSC
ClassificationThermal analysis
ManufacturersTA Instruments,
Mettler Toledo,
Hitachi,
Shimadzu,
PerkinElmer,
Malvern Instruments,
NETZSCH-Gruppe
Other techniques
RelatedIsothermal microcalorimetry
Isothermal titration calorimetry
Dynamic mechanical analysis
Thermomechanical analysis
Thermogravimetric analysis
Differential thermal analysis
Dielectric thermal analysis

Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature.[1] Both the sample and reference are maintained at nearly the same temperature throughout the experiment.

Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned.

Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead,[2] but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively.

The technique was developed by E. S. Watson and M. J. O'Neill in 1962,[3] and introduced commercially at the 1963 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy.

The first adiabatic differential scanning calorimeter that could be used in biochemistry was developed by P. L. Privalov and D. R. Monaselidze in 1964 at Institute of Physics in Tbilisi, Georgia.[4] The term DSC was coined to describe this instrument, which measures energy directly and allows precise measurements of heat capacity.[5]

  1. ^ Freire, Ernesto (1995), Shirley, Bret A. (ed.), "Differential Scanning Calorimetry", Protein Stability and Folding: Theory and Practice, Methods in Molecular Biology, vol. 40, Totowa, NJ: Humana Press, pp. 191–218, doi:10.1385/0-89603-301-5:191, ISBN 978-1-59259-527-3, PMID 7633523, retrieved 2023-08-09
  2. ^ Yaragalla, Srinivasarao; Mishra, Raghvendra Kumar; Thomas, Sabu; Kalarikkal, Nandakumar; Maria, Hanna J. (11 February 2019). Carbon-Based Nanofillers and Their Rubber Nanocomposites. Elsevier Science. ISBN 9780128173428. Retrieved 2023-05-10.
  3. ^ U.S. patent 3,263,484.
  4. ^ Molecular biology (in Russian). Vol. 6. Moscow. 1975. pp. 7–33.{{cite book}}: CS1 maint: location missing publisher (link)
  5. ^ Wunderlich B (1990). Thermal Analysis. New York: Academic Press. pp. 137–140. ISBN 0-12-765605-7.

Developed by StudentB