Doubly special relativity

Doubly special relativity[1][2] (DSR) – also called deformed special relativity or, by some[who?], extra-special relativity – is a modified theory of special relativity in which there is not only an observer-independent maximum velocity (the speed of light), but also an observer-independent maximum energy scale (the Planck energy) and/or a minimum length scale (the Planck length).[3] This contrasts with other Lorentz-violating theories, such as the Standard-Model Extension, where Lorentz invariance is instead broken by the presence of a preferred frame. The main motivation for this theory is that the Planck energy should be the scale where as yet unknown quantum gravity effects become important and, due to invariance of physical laws, this scale should remain fixed in all inertial frames.[4]

  1. ^ Amelino-Camelia, Giovanni (1 November 2009). "Doubly-Special Relativity: Facts, Myths and Some Key Open Issues". Recent Developments in Theoretical Physics. Statistical Science and Interdisciplinary Research. Vol. 9. pp. 123–170. arXiv:1003.3942. doi:10.1142/9789814287333_0006. ISBN 978-981-4287-32-6. S2CID 118855372.
  2. ^ Amelino-Camelia, Giovanni (1 July 2002). "Doubly Special Relativity". Nature. 418 (6893): 34–35. arXiv:gr-qc/0207049. Bibcode:2002Natur.418...34A. doi:10.1038/418034a. PMID 12097897. S2CID 16844423.
  3. ^ Amelino-Camelia, Giovanni (2010). "Doubly-Special Relativity: Facts, Myths and Some Key Open Issues". Symmetry. 2 (4): 230–271. arXiv:1003.3942. Bibcode:2010rdtp.book..123A. doi:10.3390/sym2010230.
  4. ^ Hossenfelder, S. (2006). "Interpretation of Quantum Field Theories with a Minimal Length Scale". Physical Review D. 73 (10): 105013. arXiv:hep-th/0603032. Bibcode:2006PhRvD..73j5013H. doi:10.1103/PhysRevD.73.105013. S2CID 34343593.

Developed by StudentB