Echo state network

The basic schema of an echo state network

An echo state network (ESN)[1][2] is a type of reservoir computer that uses a recurrent neural network with a sparsely connected hidden layer (with typically 1% connectivity). The connectivity and weights of hidden neurons are fixed and randomly assigned. The weights of output neurons can be learned so that the network can produce or reproduce specific temporal patterns. The main interest of this network is that although its behavior is non-linear, the only weights that are modified during training are for the synapses that connect the hidden neurons to output neurons. Thus, the error function is quadratic with respect to the parameter vector and can be differentiated easily to a linear system.

Alternatively, one may consider a nonparametric Bayesian formulation of the output layer, under which: (i) a prior distribution is imposed over the output weights; and (ii) the output weights are marginalized out in the context of prediction generation, given the training data. This idea has been demonstrated in[3] by using Gaussian priors, whereby a Gaussian process model with ESN-driven kernel function is obtained. Such a solution was shown to outperform ESNs with trainable (finite) sets of weights in several benchmarks.

Some publicly available efficient implementations of ESNs are aureservoir (a C++ library for various kinds with python/numpy bindings), MATLAB, ReservoirComputing.jl (a Julia-based implementation of various types) and pyESN (for simple ESNs in Python).

  1. ^ Jaeger, H.; Haas, H. (2004). "Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication" (PDF). Science. 304 (5667): 78–80. Bibcode:2004Sci...304...78J. doi:10.1126/science.1091277. PMID 15064413. S2CID 2184251.
  2. ^ Jaeger, Herbert (2007). "Echo state network". Scholarpedia. 2 (9): 2330. Bibcode:2007SchpJ...2.2330J. doi:10.4249/scholarpedia.2330.
  3. ^ Chatzis, S. P.; Demiris, Y. (2011). "Echo State Gaussian Process". IEEE Transactions on Neural Networks. 22 (9): 1435–1445. doi:10.1109/TNN.2011.2162109. PMID 21803684. S2CID 8553623.

Developed by StudentB