Einsteinium

Einsteinium, 99Es
Quartz vial (9 mm diameter) containing ~300 micrograms of solid 253Es. The illumination produced is a result of the intense radiation from 253Es.
Einsteinium
Pronunciation/nˈstniəm/ (eyen-STY-nee-əm)
Appearancesilvery; glows blue in the dark
Mass number[252]
Einsteinium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Ho

Es

californiumeinsteiniumfermium
Atomic number (Z)99
Groupf-block groups (no number)
Periodperiod 7
Block  f-block
Electron configuration[Rn] 5f11 7s2
Electrons per shell2, 8, 18, 32, 29, 8, 2
Physical properties
Phase at STPsolid
Melting point1133 K ​(860 °C, ​1580 °F)
Boiling point1269 K ​(996 °C, ​1825 °F) (estimated)
Density (near r.t.)8.84 g/cm3
Atomic properties
Oxidation statescommon: +3
+2,[1] +4
ElectronegativityPauling scale: 1.3
Ionization energies
  • 1st: 619 kJ/mol
Color lines in a spectral range
Spectral lines of einsteinium
Other properties
Natural occurrencesynthetic
Crystal structureface-centered cubic (fcc)
Face-centered cubic crystal structure for einsteinium
Magnetic orderingparamagnetic
CAS Number7429-92-7
History
Namingafter Albert Einstein
DiscoveryLawrence Berkeley National Laboratory (1952)
Isotopes of einsteinium
Main isotopes[2] Decay
abun­dance half-life (t1/2) mode pro­duct
252Es synth 471.7 d α 248Bk
ε 252Cf
β 252Fm
253Es synth 20.47 d SF
α 249Bk
254Es synth 275.7 d ε 254Cf
β 254Fm
α 250Bk
255Es synth 39.8 d β 255Fm
α 251Bk
SF
 Category: Einsteinium
| references

Einsteinium is a synthetic chemical element; it has symbol Es and atomic number 99. It is named after Albert Einstein and is a member of the actinide series and the seventh transuranium element.

Einsteinium was discovered as a component of the debris of the first hydrogen bomb explosion in 1952. Its most common isotope, einsteinium-253 (253Es; half-life 20.47 days), is produced artificially from decay of californium-253 in a few dedicated high-power nuclear reactors with a total yield on the order of one milligram per year. The reactor synthesis is followed by a complex process of separating einsteinium-253 from other actinides and products of their decay. Other isotopes are synthesized in various laboratories, but in much smaller amounts, by bombarding heavy actinide elements with light ions. Due to the small amounts of einsteinium produced and the short half-life of its most common isotope, there are no practical applications for it except basic scientific research. In particular, einsteinium was used to synthesize, for the first time, 17 atoms of the new element mendelevium in 1955.

Einsteinium is a soft, silvery, paramagnetic metal. Its chemistry is typical of the late actinides, with a preponderance of the +3 oxidation state; the +2 oxidation state is also accessible, especially in solids. The high radioactivity of 253Es produces a visible glow and rapidly damages its crystalline metal lattice, with released heat of about 1000 watts per gram. Studying its properties is difficult due to 253Es's decay to berkelium-249 and then californium-249 at a rate of about 3% per day. The longest-lived isotope of einsteinium, 252Es (half-life 471.7 days) would be more suitable for investigation of physical properties, but it has proven far more difficult to produce and is available only in minute quantities, not in bulk.[3] Einsteinium is the element with the highest atomic number which has been observed in macroscopic quantities in its pure form as einsteinium-253.[4]

Like all synthetic transuranium elements, isotopes of einsteinium are very radioactive and are considered highly dangerous to health on ingestion.[5]

  1. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.
  2. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  3. ^ Einsteinium Archived 2021-05-19 at the Wayback Machine. periodic.lanl.gov
  4. ^ Cite error: The named reference h1579 was invoked but never defined (see the help page).
  5. ^ Cite error: The named reference CRC was invoked but never defined (see the help page).

Developed by StudentB