Environmental impact of wind power

Greenhouse gas emissions per energy source. Wind energy is one of the sources with the least greenhouse gas emissions.
Livestock grazing near a wind turbine.[1]

The environmental impact of electricity generation from wind power is minor when compared to that of fossil fuel power.[2] Wind turbines have some of the lowest global warming potential per unit of electricity generated: far less greenhouse gas is emitted than for the average unit of electricity, so wind power helps limit climate change.[3] Wind power consumes no fuel, and emits no air pollution, unlike fossil fuel power sources. The energy consumed to manufacture and transport the materials used to build a wind power plant is equal to the new energy produced by the plant within a few months.[4]

Onshore (on-land) wind farms can have a significant visual impact and impact on the landscape.[5] Due to a very low surface power density and spacing requirements, wind farms typically need to be spread over more land than other power stations.[6][7] Their network of turbines, access roads, transmission lines, and substations can result in "energy sprawl";[8] although land between the turbines and roads can still be used for agriculture.[9][10]

Conflicts arise especially in scenic and culturally-important landscapes. Siting restrictions (such as setbacks) may be implemented to limit the impact.[11] The land between the turbines and access roads can still be used for farming and grazing.[9][12] They can lead to "industrialization of the countryside".[13] Some wind farms are opposed for potentially spoiling protected scenic areas, archaeological landscapes and heritage sites.[14][15][16] A report by the Mountaineering Council of Scotland concluded that wind farms harmed tourism in areas known for natural landscapes and panoramic views.[17]

Habitat loss and fragmentation are the greatest potential impacts on wildlife of onshore wind farms,[8] but they are small[18] and can be mitigated if proper monitoring and mitigation strategies are implemented.[19] The worldwide ecological impact is minimal.[2] Thousands of birds and bats, including rare species, have been killed by wind turbine blades,[20] as around other manmade structures, though wind turbines are responsible for far fewer bird deaths than fossil-fuel infrastructure.[21][22] This can be mitigated with proper wildlife monitoring.[23]

Many wind turbine blades are made of fiberglass and some only had a lifetime of 10 to 20 years.[24] Previously, there was no market for recycling these old blades,[25] and they were commonly disposed of in landfills.[26] Because blades are hollow, they take up a large volume compared to their mass. Since 2019, some landfill operators have begun requiring blades to be crushed before being landfilled.[24] Blades manufactured in the 2020s are more likely to be designed to be completely recyclable.[26]

Wind turbines also generate noise. At a distance of 300 metres (980 ft) this may be around 45 dB, which is slightly louder than a refrigerator. At 1.5 km (1 mi) distance they become inaudible.[27][28] There are anecdotal reports of negative health effects on people who live very close to wind turbines.[29] Peer-reviewed research has generally not supported these claims.[30][31][32] Pile-driving to construct non-floating wind farms is noisy underwater,[33] but in operation offshore wind is much quieter than ships.[34]

  1. ^ Buller, Erin (11 July 2008). "Capturing the wind". Uinta County Herald. Archived from the original on 31 July 2008. Retrieved 4 December 2008."The animals don't care at all. We find cows and antelope napping in the shade of the turbines." – Mike Cadieux, site manager, Wyoming Wind Farm
  2. ^ a b Dunnett, Sebastian; Holland, Robert A.; Taylor, Gail; Eigenbrod, Felix (2022-02-08). "Predicted wind and solar energy expansion has minimal overlap with multiple conservation priorities across global regions". Proceedings of the National Academy of Sciences. 119 (6). Bibcode:2022PNAS..11904764D. doi:10.1073/pnas.2104764119. ISSN 0027-8424. PMC 8832964. PMID 35101973.
  3. ^ "How Wind Energy Can Help Us Breathe Easier". Energy.gov. Retrieved 2022-09-27.
  4. ^ Guezuraga, Begoña; Zauner, Rudolf; Pölz, Werner (January 2012). "Life cycle assessment of two different 2 MW class wind turbines". Renewable Energy. 37 (1): 37. Bibcode:2012REne...37...37G. doi:10.1016/j.renene.2011.05.008.
  5. ^ Thomas Kirchhoff (2014): Energiewende und Landschaftsästhetik. Versachlichung ästhetischer Bewertungen von Energieanlagen durch Bezugnahme auf drei intersubjektive Landschaftsideale Archived 18 April 2016 at the Wayback Machine, in: Naturschutz und Landschaftsplanung 46 (1): 10–16.
  6. ^ "What are the pros and cons of onshore wind energy?". Grantham Research Institute on climate change and the environment. January 2018. Retrieved 2024-06-04.
  7. ^ "What are the pros and cons of onshore wind energy?". Grantham Research Institute on climate change and the environment. Archived from the original on 22 June 2019. Retrieved 2020-12-12.
  8. ^ a b Nathan F. Jones, Liba Pejchar, Joseph M. Kiesecker. "The Energy Footprint: How Oil, Natural Gas, and Wind Energy Affect Land for Biodiversity and the Flow of Ecosystem Services". BioScience, Volume 65, Issue 3, March 2015. pp. 290–301.
  9. ^ a b "Why Australia needs wind power" (PDF). Archived (PDF) from the original on 3 March 2016. Retrieved 7 January 2012.
  10. ^ "Wind energy Frequently Asked Questions". British Wind Energy Association. Archived from the original on 19 April 2006. Retrieved 21 April 2006.
  11. ^ Loren D. Knopper, Christopher A. Ollson, Lindsay C. McCallum, Melissa L. Whitfield Aslund, Robert G. Berger, Kathleen Souweine, and Mary McDaniel, Wind Turbines and Human Health, [Frontiers of Public Health]. June 19, 2014; 2: 63.
  12. ^ "Wind energy Frequently Asked Questions". British Wind Energy Association. Archived from the original on 2006-04-19. Retrieved 2006-04-21.
  13. ^ Szarka, Joseph. Wind Power in Europe: Politics, Business and Society. Springer, 2007. p. 176.
  14. ^ Dodd, Eimear (27 March 2021). "Permission to build five turbine wind farm at Kilranelagh refused". Irish Independent. Retrieved 18 January 2022.
  15. ^ Kula, Adam (9 April 2021). "Department defends 500ft windfarm in protected Area of Outstanding Beauty". The News Letter. Retrieved 18 January 2022.
  16. ^ "Building wind farms 'could destroy Welsh landscape'". BBC News. 4 November 2019. Retrieved 18 January 2022.
  17. ^ Gordon, David. Wind farms and tourism in Scotland Archived 21 September 2020 at the Wayback Machine. Mountaineering Council of Scotland. November 2017. p. 3.
  18. ^ Dunnett, Sebastian; Holland, Robert A.; Taylor, Gail; Eigenbrod, Felix (2022-02-08). "Predicted wind and solar energy expansion has minimal overlap with multiple conservation priorities across global regions". Proceedings of the National Academy of Sciences. 119 (6). Bibcode:2022PNAS..11904764D. doi:10.1073/pnas.2104764119. ISSN 0027-8424. PMC 8832964. PMID 35101973.
  19. ^ Parisé, J.; Walker, T. R. (2017). "Industrial wind turbine post-construction bird and bat monitoring: A policy framework for Canada". Journal of Environmental Management. 201: 252–259. Bibcode:2017JEnvM.201..252P. doi:10.1016/j.jenvman.2017.06.052. PMID 28672197.
  20. ^ Hosansky, David (April 1, 2011). "Wind Power: Is wind energy good for the environment?". CQ Researcher.
  21. ^ Katovich, Erik (2024-01-09). "Quantifying the Effects of Energy Infrastructure on Bird Populations and Biodiversity". Environmental Science & Technology. 58 (1): 323–332. Bibcode:2024EnST...58..323K. doi:10.1021/acs.est.3c03899. ISSN 0013-936X. PMID 38153963.
  22. ^ "Wind turbines are friendlier to birds than oil-and-gas drilling". The Economist. ISSN 0013-0613. Retrieved 2024-01-16.
  23. ^ Parisé, J.; Walker, T. R. (2017). "Industrial wind turbine post-construction bird and bat monitoring: A policy framework for Canada". Journal of Environmental Management. 201: 252–259. Bibcode:2017JEnvM.201..252P. doi:10.1016/j.jenvman.2017.06.052. PMID 28672197.
  24. ^ a b Sneve, Joe (4 September 2019). "Sioux Falls landfill tightens rules after Iowa dumps dozens of wind turbine blades". Argus Leader. Archived from the original on 24 November 2021. Retrieved 5 September 2019.
  25. ^ Kelley, Rick (18 February 2018). "Retiring worn-out wind turbines could cost billions that nobody has". Valley Morning Star. Archived from the original on 5 September 2019. Retrieved 5 September 2019. The blades are composite, those are not recyclable, those can't be sold," Linowes said. "The landfills are going to be filled with blades in a matter of no time.
  26. ^ a b "These bike shelters are made from wind turbines". World Economic Forum. 19 October 2021. Retrieved 2022-04-02.
  27. ^ How Loud Is A Wind Turbine? Archived 15 December 2014 at the Wayback Machine. GE Reports (2 August 2014). Retrieved on 20 July 2016.
  28. ^ Gipe, Paul (1995). Wind Energy Comes of Age. John Wiley & Sons. pp. 376–. ISBN 978-0-471-10924-2.
  29. ^ Gohlke, J. M.; et al. (2008). "Health, Economy, and Environment: Sustainable Energy Choices for a Nation". Environmental Health Perspectives. 116 (6): A236–A237. doi:10.1289/ehp.11602. PMC 2430245. PMID 18560493.
  30. ^ Professor Simon Chapman. "Summary of main conclusions reached in 25 reviews of the research literature on wind farms and health Archived 22 May 2019 at the Wayback Machine" Sydney University School of Public Health, April 2015.
  31. ^ Hamilton, Tyler (15 December 2009). "Wind Gets Clean Bill of Health". Toronto Star. Toronto. pp. B1–B2. Archived from the original on 18 October 2012. Retrieved 16 December 2009.
  32. ^ Colby, W. David et al. (December 2009) "Wind Turbine Sound and Health Effects: An Expert Panel Review" Archived 18 June 2020 at the Wayback Machine, Canadian Wind Energy Association.
  33. ^ "The Underwater Sound from Offshore Wind Farms" (PDF).
  34. ^ Tougaard, Jakob; Hermannsen, Line; Madsen, Peter T. (2020-11-01). "How loud is the underwater noise from operating offshore wind turbines?". The Journal of the Acoustical Society of America. 148 (5): 2885–2893. Bibcode:2020ASAJ..148.2885T. doi:10.1121/10.0002453. ISSN 0001-4966. PMID 33261376. S2CID 227251351.

Developed by StudentB